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Abstract

Evolutionary algorithms (EAs) are stochastic population-based algorithms inspired by the natural
processes of selection, mutation, and recombination. EAs are often employed as optimuimn seeking techniques.
A formal framework for EAs is proposed, in which evolutionary operators are viewed as mappings from
parameter spaces to spaces of random functions. Formal definitions within this framework capture the
distinguishing characteristics of the classes of recombination, mutation, and selection operators. EAs which
use strictly invariant selection operators and order invariant representation schemes comprise the class of

linkage-friendly genetic algorithms (1fGAs).

Fast messy genetic algorithms (fmGAs) are 1fGAs which use binary tournament selection (BTS) with
thresholding, periodic filtering of a fixed number of randomly selected genes from each individual, and
generalized single-point crossover. Probabilistic variants of thresholding and filtering are proposed. EAs

using the probabilistic operators are generalized fmGAs (gfmGAs).

A dynamical systems model of IfGAs is developed which permits prediction of expected effectiveness.
BTS with probabilistic thresholding is modeled at various levels of abstraction as a Markov chain. Transitions
at the most detailed level involve decisions between classes of individuals. The probability of correct decision
making is related to appropriate maximal order statistics, the distributions of which are obtained. Existing

filtering modcls arc extended to include probabilistic individual lengths.

Sensitivity of IfGA effectiveness to exogenous parameters limits practical applications. The 1fGA
parameter selection problem is formally posed as a constrained optimization problem in which the cost func-
tional is related to expected effectiveness. Kuhn-Tucker conditions for the optimality of gfmGA parameters

are derived. Parameter selection techniques are proposed for fmGAs and gfmGAs.

xi



Analysis of Linkage-Friendly Genetic Algorithms

[. Introduction
1.1  Optimization

Many problems in science, engineering, and operations research may be viewed as optimization prob-
lems. Informally, an optimization problem involves a number of alternatives, and the solution to the problem
is the set of alternatives which maximize or minimize some criterion. Examples include determination of the
minimum energy state of a large biomolecule, design of a jet engine with maximum thrust-to-weight ratio,
and minimization of the total distance traveled in visiting a sct of destinations. Frequently, the alternatives
are also subject to one or more constraints. In the present examples, certain atoms of the biomolecule may
form a ring system, there may be a maximum allowable cost for the engine, and repeated visits to a particular
destination may be prohibited. This last example is the famous Traveling Salesperson Problem (TSP) [26].

Optimization problems are defined formally in Chapter II.

Often, the set of alternatives is isomorphic to a region! (or union of several regions) of R™. For example,
in identifying the minimum cnergy statc of a large biomolecule, the possible arrangements of the constitucnt
atoms are determined by some subset of the molecule’s dihedral angles (making the common simplifying
assumption that all bond lengths and bond angles, and possibly some of the dihedral angles, are fixed at
their “equilibrium” values [73]). Each angle takes on values in the interval (—w, 7] C R, so the set of possible

states is isomorphic to (—m, 7]” C R"™ where n is the number of variable dihedral angles.

In contrast, the set of alternatives for a combinatoric optimization problem is discrete (i.e. finite or
countably infinite). The previous example may be further simplified by assuming that each variable dihedral

angle assumes values in {—%, 5,7}, so that the set of alternatives is isomorphic to {—%, 5, 7}". The resulting

T Apostol [3] defines “region” as follows: “A set in R™ is called a region if it is the union of an open connected set with some,
none, or all its boundary points.”



optimization problem is combinatoric. Likewise, the set of alternatives in the TSP is the set of permutations

over the sct of destinations. This sct is of course finite, although possibly quite large.

There is only one general mcethod guarantced to obtain the optimum alternative of an arbitrary opti-
mization problem, that being exhaustive search [63] (pure random search being a special case thereof). For
many optimization problems of practical interest, the number of alternatives prohibits their enumeration.
Thus the practitioner is often forced to settle for solutions which are “good enough,” even though they are
not optimal. When the problem is posed as such, it may be referred to as a semi-optimization problem [62],
and thc solution techniques cmployed are called optimum-secking techniques. Even finding an “acceptable”

solution may require exploring a significant part of a large search space.

The various techniques used to solve optimization problems are part of what come to be a unified
theory of optimization. Some techniques have been known and used for centuries, while the advent of the
high spced digital computer has cnabled the application of other techniques which were previously impractical
duc to thc large numbecr of calculations rcquired. It also brought about the development of entircly new
techniques designed explicitly to exploit the strengths of the digital computer. Still, problein sizes are limited
by processor speed and memory size, and the relative efficiency and effectiveness of existing algorithms are

not necessarily preserved by hardware advances.

This last observation is especially important as multiprocessor architectures (parallel, distributed,
or otherwise) become more prevalent. Realization of the effectiveness and efficiency improvements made
possible by such architectures depends on the design and use of appropriate multiprocessor algorithms. Just
as the arrival of single processor computers spawned the development of new techniques, multiprocessor

architectures invite the investigation of a new set of optimization tools.

1.2 Ewvolutionary Algorithms

A promising set of candidates for such investigation are a class of algorithms inspired by the princi-

ples of evolution, known appropriately as evolutionary algorithms. These techniques operate by applying



biologically-inspired operators, such as recombination, mutation, and selection, to a population of individ-
uals, each of which represents a candidate solution (alternative). Their use as optimum seeking techniques

derives from the resulting analogy to the principle of “survival of the fittest.”

Because of their population based approach, evolutionary algorithms are well suited for implementation
on multiprocessor systems. One example which receives significant attention in the literature in this regard
is the simple genetic algorithm. The fast messy genetic algorithm is another. It is representative of a class of
cvolutionary algorithms which are called linkage-friendly genctic algorithms in this rescarch. Each of thesc

algorithms is defined precisely in Chapter II.

Linkage-friendly genetic algorithms are potentially more effective and efficient than the simple genetic
algorithm for a large class of optimization problems, but their properties are not well understood. In partic-
ular, the fast messy genetic algorithm is demonstrated in limited applications to pedagogical problems [35]
to be an cffective and cfficicnt optimum sccking technique. However, its practical use is limited by its depen-
dence on a large number of exogenous parameters. Specifically, its effectiveness depends strongly on its many
“filtering” and “thresholding” parameters. Currently available parameter selection methodologies [35, 46, 47]

are ad hoc in nature and do not reliably result in satisfactory effectiveness.

1.3 Problem Statement and Approach

The primary objectives of this research are to

¢ mathematically model those properties of specific linkage-friendly genetic algorithms which are related

to expected effectiveness; and

e dcvclop cxogenous paramcter sclection techniques for those linkage-friendly gencetic algorithms, focusing

on maximizing their expected effectiveness.

Linkage-friendly genetic algorithms are modeled as dynamical systems, and expected effectiveness

is defined as a deterministic function of the system state. The state transitions are determined by the



specific operators used by the algorithm, and the parameters of those operators. The operators modeled
arc gencralizations of the fast messy genctic algorithm’s “building block filtering” and “binary tournamecnt

selection with thresholding” operators.

The dynamical systems model predicts the expected effectiveness resulting from a particular choice of
filtering and thresholding parameters. Consequently, the parameter selection problem may be posed as an
optimization problem. The set of alternatives is the permissible set of filtering and thresholding parameters,
and the criterion to be maximized is cxpected cffectiveness. Taking this perspective, this rescarch develops
exogenous parameter selection techniques based on standard optimum seeking techniques. A parameter

selection technique is considered acceptable if it satisfies the following criteria:

1. the technique guarantees expected effectiveness no worse than that resulting from the best set of

parameters obtained using existing techniques,

2. the technique requires no a priori knowledge of the optimal solution,

3. the technique requires no design paramecters beyond those of the linkage-friendly genctic algorithm;

and

4. the computational effort required by the technique scales well with the effort required by the linkage-

friendly genetic algorithm.

1.4 Organization of the Dissertation

The background necessary to fully define the problem outlined in Section 1.3 is provided in Chapter II,
beginning with a bricf introduction to optimization thcory and development of a gencral framework for
evolutionary algorithms. The remainder of the chapter introduces simple genetic algorithms, then focuses
on linkage-friendly genetic algorithms. Chapter III presents the previously mentioned generalizations of the
fast messy genetic algorithm operators. The mathematical model of building block filtering is developed in

Chapter IV, and the model of tournament selection is developed in Chapter V. The parameter selection



problem is formally posed as an optimization problem and parameter selection techniques are proposed in

Chapter VI. Finally, Chapter VII presents conclusions and recommendations for future research.



II. Selected Topics in Evolutionary Algorithms

This chapter provides a background in evolutionary algorithms (EAs), focusing on genetic algorithms
(GAs). Selected concepts of optimization theory are introduced in Section 2.1. The relationship of GAs
to the more general class of EAs is discussed briefly in Section 2.2. A considerable portion of the chapter
(Section 2.3) is devoted to development of a formal framework for evolutionary algorithms, including aspects
which are novel contributions of this research. The section presents standard definitions of decoding and
fitness scaling functions, as well as novel definitions of evolutionary operators in general and recombination,

mutation, and selection operators in particular.

Within the formal framework, Section 2.4 defines the simple genetic algorithm (sGA) [29], which is a
primary focus in EA research. As an optimum seeking technique, the sGA exhibits the significant drawback
that its effectiveness is sensitive to both permutationsin the decoding function and the choice of fitness scaling
function. The dependence of sGA effectiveness on the fitness scaling function is examined theoretically in
Section 2.5. The remainder of the chapter discusses linkage-friendly genetic algorithms (Section 2.6), for
which the effectiveness is independent of both permutations in the decoding function and the choice of

fitness scaling function.

2.1 Optimization Theory

This section introduces selected fundamental concepts and terminology of optimization theory. For a
more thorough treatment, including discussion of techniques, see for example Pierre [63]. An optimization
problem involves either maximization or minimization of a function f : R™ — R over a set 2 C R™. The
function f is known by various names in the optimization literature including objective function, objective
functional, cost function, and performance measure. The set § is known as either the feasible region, the

feasible set, or the admissible set.

A point X € Q is called a point of strong local mazimum (or mazimizer) if there exists an € > 0 such

that if x € Q — {X} # {} and ||x — X|| < € then f(%X) > f(x). In the sequel, such a point X is called simply a



point of local mazimum. The value f(X) is then a local mazimum of f in . Definitions of points of (strong)
local minimum and local minimum are of course directly analogous. Any point X € Q which is either a point

of local maximum or a point of local minimum is called a relative extremum point.

If a point X € Q satisfies f(%X) > f(x) for all x € Q@ — {X} # {}, then f(X) is the absolute mazimum
(or global mazimwm). Similarly, if a point X € Q satisfies f(%X) < f(x) for all x € Q — {%} # {}, then f(%) is

the absolute minimum (or global minimum).

2.2  Relationship of Genetic Algorithms to Evolutionary Algorithms

Genetic algorithms (GAs) are a form of computation inspired by theories of evolution. This places
them in the class of algorithms called Evolutionary Algorithms (EAs). Other members of this class include

Evolution Strategies (ESs) [66, 69] and Evolutionary Programming (EP) [24] (see Figure 1). Thomas Béck [6]

Genetic Algorithms
(Holland)

\__/

Evolution Strategies Evolutionary Programming

(Rechenberg) (Fogel)

Evolutionary Algorithms

Figure 1. Venn Diagram of the Class of Evolutionary Algorithms

provides an cxccllent review of all three, including a historical perspective.

Genetic algorithms were first proposed by Holland in connection with his theories of complex adaptive
systems [42] (where they were called “reproductive plans”). De Jong later applied genetic algorithms to the

functional optimization problem [17]. Since then, a significant portion of the genetic algorithm literature



has been devoted to modifications aimed at improving the effectiveness and efficiency of genetic algorithms

as optimum sccking tcchniques.

Historically, the three major areas developed independently between the 1960’s and the 1980’s. Interest
in evolutionary algorithms, and genetic algorithms in particular, grew dramatically in the late 1980’s and
early 1990’s, as demonstrated by the success of numerous international conferences (see Table 1) and the
appearance of a number of textbooks (e.g. [6, 24, 29, 44, 58, 60, 70]). Also during this period, interaction be-
tween the communitics increased, as many rescarchers began transferring analytical insight and expcerimental

approachcs amongst the three ficlds.

Table 1. Major Evolutionary Algorithm Conference Proceedings

| Conference | Primary Focus | Proceedings |
International Conference on Genetic Algorithms GAs 37, 38, 67, 8, 25, 19]
Foundations of Genetic Algorithms GAs 65, 75, 76, 9]
Parallel Problem Solving from Nature GAs and ESs 68, 51, 13, 18]
Annual Conference on Evolutionary Programming EPs 20, 21, 71, 52, 23]
IEEE International Conference on Evolutionary Computing | EAs 59, 22, 72]

2.3 A Framework for Fvolutionary Algorithms

As a first step towards unifying the theory of the three major evolutionary algorithm paradigms, Back
and Schwefel propose a general “algorithmic description” for EAs, which they specialize for each of the three
paradigms [7]. The various mappings appearing in their description are defined so broadly that their essential
characteristics are overlooked. This section develops formal definitions of the mappings which capture these

characteristics, then presents an extension of Bick and Schwefel’s algorithmic description.

2.3.1 Representation.  Associated with each evolutionary algorithm is a non-empty set I, called the
individual space of the algorithm. Each individual a € I represents a candidate solution to the optimization

problem at hand. The representation scheme is formally defined by the decoding function.



Definition 2.3.1 (Decoding function): Let I be a non-empty set (the individual space), and f : R"—R
(the objective function). If D : I — R™ is total, i.e. the domain of D is all of I, then D is called a decoding

function. O

The mapping D is not necessarily surjective (in fact, it cannot be if I is countable). The range of D

determines the subset of R™ actually available for exploration by the evolutionary algorithm.

The fitness of an individual is an indication of the quality of the candidate solution represented by the
individual. The mapping which yields this indication is the fitness function. It is the fitness function which

the cvolutionary algorithm actually attempts to optimizc.

Definition 2.3.2 (Fitness function): Let I be o non-empty set (the individual space), D : I — R™ (the
decoding function), f : R™ — R (the objective function), and Ts : R — R (the fitness scaling function® ).

Then & £ Ts0 f oD is called a fitness function. O

In this definition it is understood that the objective function f is determined by the application, while the
specification of the decoding function D and the fitness scaling function T are design issues. An important
design criteria for the scaling function is that it preserve the partial ordering induced on the individual space

by the decoding and objective functions.

Definition 2.3.3 (Order-preserving fitness scaling function): If for every non-empty set I (the
individual space), every (a,b) € I, every D : I — R™ (the decoding function), and every f : R — R

(the objective function), a mapping Ts; : R — R (the fitness scaling function) satisfies

f(D(a)) < f(D(b)) = Ts(f(D(a)) < T:(f(D(b))) .

then T is called an order-preserving fitness scaling function. O

1Use of the term “scaling” for the mapping T is consistent with the genetic algorithms literature, although is not descriptive
of many of the operators used in practice.



The following lemma provides a condition which is necessary and sufficient for a scaling function to be

order-preserving.

Lemma 2.3.4 A fitness scaling function is order-preserving if and only if it is strictly increasing.

Proof: “If”: Let T; : R — R be strictly increasing, I a non-empty set, (a,b) € I, D : I — R"
for somen e N, f : R* — R, g, S f(D(a)), and g = f(D(b)). Suppose f(D(a)) < f(D(b)). Then
ga < gy, and because T is strictly increasing, Ts(f(D(a))) = Ts(g4) < Ts(gp) = Ts(f(D(b))). Thus,
f(D(a)) < f(D(b)) = T,(f(D(a)) < T,(f(D(b)). Since I, a, b, D, and f are arbitrary, T is an order-

prescrving fitness scaling function.

“Only if”: Let Ty : R — R be an order-preserving fitness scaling function, z,y € R, I < {z,y}, a = z,
b2 y, and D = f : R — R the identity mapping. Suppose z < y. Then f(D(a)) = z < y = f(D(b)),
and because T is an order-preserving fitness scaling function Ts(z) = Ts(f(D(a))) < T:(f(D(b))) = Ts(y).

Thus, # < y = Ts(z) < Ts(y). Since & and y are arbitrary, T is strictly increasing. |

Execution of an evolutionary algorithm typically begins by randomly sampling individuals from I. The
sampling is typically pcrformed with replacement, and the resulting collection of individuals is called the
initial population, denoted P(0).2 More generally, a population is a collection P = {ay,...,a,} of individuals

a; € I, and the number of individuals g in the population is the population size.

Following initialization, cxccution procceds itcratively. Each itcration counsists of application of onec
or more evolutionary operators. The combined effect of the evolutionary operators applied in a particular

generation ¢t € N is to transform the current population P(¢) into a new population P(¢+ 1).

2.3.2  Ewolutionary Operators. Most authors, including Bick and Schwefel, describe evolutionary

opcrators as dircctly mapping populations into populations, with the mapping bcing “controlled” by the

2In this research, populations are treated interchangeably as n-tuples of individuals or multisets of individuals, as convenient.
The term “multiset” describes the primitive mathematical concept of a collection of elements for which the multiplicities of the
elements, but not their order, is important [1]. For example, the multiset {a, a,b} is equal to the multiset {a,b,a}, and neither
is equal to the multiset {a,a,b,b}. Multisets are also called bags.

One further word regarding terminology. What is referred to as a “population” in the evolutionary algorithms literature is
referred to as a “sample” in the mathematical statistics literature. Similarly, the “individual space” of evolutionary algorithms
corresponds to the “population” of mathematical statistics. The latter is also called the “grand population” [12].
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parameters of the operator. This research proposes a more formal view of evolutionary operators as mappings
from parameter spaces to random population transformations (i.e., random functions® with values in the set of
population transformations). This view precisely identifies the relationships among the operator parameters
and the various mappings. In the following definitions and the sequel, the set of mappings from a set S7 to

a set Sy is denoted T (81, Sz).

The first definition is that of a population transformation, which is any mapping from populations to

populations, whether or not the populations are of the same size (see Figure 2).

Figure 2. The population transformation T deterministically maps the parent population P (of size y) to
the offspring population P’ (of size u').

Definition 2.3.5 (Population transformation): Let I be a non-empty set (the individual space), and
i, it € ZT (the parent and offspring population sizes, respectively). A mapping T : IV — I¥ is called a
population transformation. If T(P) = P’ then P is called a parent population end P’ is called an offspring

population. If u = i/, then they are called simply the population size. O

3Let Q be a sample space, and let V be a set of functions. Then X : @ — V is a random function [10]. The most frequently
encountered random functions are stochastic processes, for which the domain of each f € ¥V is R.
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The population transformation resulting from the application of an evolutionary operator, to include
the offspring population sizc, oftcn depends on the outcome of a random experiment. This dependence

motivates the concept of a random population transformation (Figure 3).

T|I*, |J ¥

w' €7+

Figure 3. The random population transformation R maps the random event w (with sample space ) to
the population transformation T', which maps parent populations of size x (which is independent
of w) to offspring populations of some fixed size y’ € Z* (which may depend on w).

Definition 2.3.6 (Random population transformation): Let I be a non-empty set (the individual

space), 1 € ZT (the parent population size), and Q0 a set (the sample space). A random function

R:Q—T|I |J 1*
wELt

is called a random population transformation. O

The distribution of population transformations resulting from the application of an evolutionary oper-
ator may depend on one or more parameters of the operator. That is, each evolutionary operator maps its

parameters to a random population transformation (Figure 4).

12



7|71, |J I*
w' €Zt

Figure 4. The evolutionary operator X maps the exogenous parameter(s) © to the random population
transformation R. The underlying sample space of R is 2. Each of the possible population
transformations acts on populations of size u. The offspring population size p/ € ZT may
depend on © as well as the random event w € Q.

Definition 2.3.7 (Evolutionary operator): Let I be a non-empty set (the individual space), p € Z*

(the parent population size), X a set (the parameter space), and § a set (the sample space). A mapping

X:X—71(QT|r |J1” (1)
w €Lt

is called an evolutionary operator. The set of evolutionary operators in the form of Equation 1 is denoted

EVOP(I, 1, X, ). O

The random population transformation X(0) is denoted Xo. The population transformation Xe(w)
is also denoted X¢g to maintain consistency with the notation of Bick and Schwefel, except where confusion
may arise. In particular, the offspring population [Xe(w)](P) is denoted Xo(P). Finally, if X has no

parameters, i.e. X € EVYOP(I,u,{},), then the offspring population is denoted X (P).

13



The specific evolutionary operators used are typically biologically inspired. The guiding principle in
their design is typically loosc analogy to Darwin’s principle of “survival of the fittest.” The most commonly

used evolutionary operators are recombination, mutation, and selection.

Recombination operators are the most general of the three. The distinguishing characteristic of recom-
bination operators is that at least some of the individuals in the offspring population may depend on more
than one individual in the parent population. The following definition reflects this characteristic. Because
of this, it is more restrictive than the overly general definition adopted by Back and Schwefel, which admits

any population transformation r : I* — I where w ' €27,

Definition 2.3.8 (Recombination operator): Letr € EVOP(I, 1, X,Q). If there ewist P € I*, © € X,
and w € Q such that at least one individual in the offspring population re(P) depends on more than one

individual of P then r is called a recombination operator. O

In contrast to recombination operators, the distinguishing feature of mutation operators is that each of the

individuals in thc offspring population depends on at most onc individual in the parcut population.

Definition 2.3.9 (Mutation operator): Letm € EVOP(I, 1, X, Q). If for every P € I*, every © € X,
and every w € Q, each individual in the offspring population me(P) depends on at most one individual of P

then m is called a mutation operator. O

This definition of mutation is more general than Biack and Schwefel’s, which assumes that parent and offspring

population sizes are equal.

The distinguishing charactcristics of sclection opcrators are that every individual in the offspring pop-
ulation is also a member of the parent population, and that the population transformation depends on the
fitnesses of the individuals in the parent population. The following definition reflects these characteristics,

in contrast to Back and Schwefel’s, which admits any population transformation s : (I“l U I“'+“) — I,
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Definition 2.3.10 (Selection operator): Let s € EVOP(I, p, X x T(I,R),Q). If for every P € I*,

every © € X, and every fitness function ® : I — R, s satisfies
aes(@,q))(P):>aEP .

then s is called a selection operator. O

Back [6] formally defines specific probabilistic selection operators in terms of selection probabilities.
The following dcfinition is cquivalent to his, but notationally rcflects the usual dependence of sclection

probabilities on both the parent population and the fitness function.

Definition 2.3.11 (Selection probability): Lets € EVOP(I,u, X x T(I,R),Q) be a selection operator,

OeX,d: ] — R a fitness function, P € I*, and a € P. Then

A
psel(a;80,3), P) = Prla€seqs)(P)|acP]

is the selection probability assigned to a € P by so,4)- O

A selection operator is order-based if order preserving transformations of the fitness function also preserve

selection probabilities of individuals.

Definition 2.3.12 (Order-based selection operator): Lets € EVOP(I, p, X xT(I,R),Q) be a selection
operator. If for every © € X (the operator parameters), every D : I — R™ (the decoding function), every
f:R™ — R (the objective function), every order-preserving fitness scaling function Ty : R — R, every

population P, and every individual a € P, s satisfies

psel(a; S(G,foD)ap) = psel(a; S(G),TsofoD)aP) )

then s s called an order-based selection operator. O



All linkage-friendly genetic algorithms (defined in Section 2.6) use order-based selection operators.
Research focuses on those which use tournament selection (defined in Section 2.6.2.3). Other examples of

order-based selection operators include ranking selection, (p, A) selection, and (@ + A) selection, which are

discussed by Back [6].

2.3.8 Algorithmic Specification. The preceding definitions of the various types of evolutionary
operators permit the following formal definition of an evolutionary algorithm, due essentially to Back and

Schwefel.

Definition 2.3.13 (Evolutionary algorithm): Let

o I be a non-empty set (the individual space),
. {M(i)}ieN a sequence in T (the parent population sizes),

{M/(i)}ieN a sequence in T (the offspring population sizes),

e &: 1 — R a fitness function,

o o: U2, (I*)" — {true,false} (the termination criterion),

X € {true,false},

® T a4 Sequence {T(z)} of recombination operators

09 o (0,7 (0,05

m a sequence {mD} of mutation operators

) Xgril) T (Qgril),']' (Iu“i)’pﬂ(i)))
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o 5 a sequence {59} of selection operators

RO X(si) x T(I,LR) — T (Qgi),'f ((]H'(i)+xu”)) ,I“(i+1)))

o e x¥ (the recombination parameters),

° @%) € X,(f} (the mutation parameters), and

8 e x{¥ (the selection parameters).

Then the algorithm shown in Figure § is called an evolutionary algorithm. O

t:=0;

initialize P(0) := {a;(0),...,a,(0)} € I*";

while (:({P(0),...,P(t)}) # true) do
recombine: P’(t) := r((;()t)(P(t));

mutate: P"(¢) := mggt)(P’(t));
select: if x "
then P(t+1):= s, (P"(t));

(()ai“,@

t

else P(t+1) 1= 50, o (P"(5)U P();
fi

t:=t+1;

od

Figure 5. Outline of an Evolutionary Algorithm

This definition differs from Back and Schwefel’s in several ways. First, and most importantly, the
population sizes, operators, and parameters are all represented as sequences, reflecting the fact that certain
evolutionary algorithms use varying population sizes, use multiple phases of execution in which different
operators are applied, and vary their parameters over the course of execution. In particular, some linkage-

friendly genetic algorithms (defined in Section 2.6) exhibit these characteristics.

Another difference between the definitions is that in Figure 5, the termination condition ¢ depends
on the set of populations {P(0),...,P(t)}. Many evolutionary algorithms terminate after a fixed num-

ber of generations (corresponding to a termination criterion satisfying «({P(0),...,P(t)}) = true <—
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card ({P(0),..., P(t)}) > ts), or based on conditions involving populations previous to the current genera-
tion. Both dcfinitions fail to includc cvolutionary algorithms which tcrminate based on conditions involving

the number of function evaluations performed.

Two further differences are notational. The variable x is introduced to preserve Back and Schwefel’s
explicit representation of selection operators which act on populations of size y’ + u, as well as those which

act on populations of size p’. In Back and Schwefel’s definition, selection acts on the population P"”(t) U @,
where @ € {{}, P(t)}.

Finally, the fitness function is represented as a parameter of the selection operator. Consequently,

explicit statement of the evaluation step is unnecessary.

To summarize, the concepts developed in this section include population transformations, random
population transformations, and general evolutionary operators, as well as recombination, mutation, and
selection operators. The development results in a general yet precise formal framework for the class of

cvolutionary algorithms. In latcr scctions, specific algorithms arc defined in the context of this framcework.

2.4 Simple Genetic Algorithms

Much of the genetic algorithms literature relates to the simple genetic algorithm (sGA), defined by
Goldberg [29] based on Holland’s seminal work [43], or slight variations thereof. This section defines the sGA
in the framework of evolutionary algorithms established in Section 2.3. Section 2.4.1 discusses the fixed-
length binary string representation used by the sGA. The next section discusses the evolutionary operators
of the sGA: single-point crossover (Section 2.4.2.1), point mutation (Section 2.4.2.2), and stochastic selection

with replacement (Section 2.4.2.3). Finally, Section 2.4.3 presents the specification of the sGA.

2.4.1 Representation. Let A be a non-empty set (the genic alphabet), £ € Z™ (the string length),

and £ = {1,...,4} (the loci). Then the individual space is I = Af, and an individual is a finite sequence
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a=(ai,...,ay) € I. Individuals are sometimes referred to as chromosomes*. Each a; € A is an allele, each
¢ € L is a locus, and each ordered pair (a;,7) is a gene. For many genetic algorithms A = {0,1}, in which
case the individuals are described as binary, and the algorithm is called binary-coded. The simple genetic

algorithm is binary-coded.

2.4.2  Genetic Operators. This section discusses the evolutionary operators used by the simple
genetic algorithm. The single-point crossover operator is defined in Section 2.4.2.1, and Section 2.4.2.2

defines the point mutation operator. Finally, roulette wheel selection is defined in Section 2.4.2.3.

2.4.2.1 Recombinalion. The recombination operators used in genetic algorithms are called
crossover operators. They arc traditionally viewed by genctic algorithm rescarchers as the primary mecha-
nism by which new solutions are introduced to the genetic algorithm search process. Numerous crossover op-
erators in use, including single-point crossover, two-point crossover, multi-point crossover, uniform crossover,
and a host of domain specific crossover operators, especially in the context of combinatoric optimization

problems.

The simple genctic algorithm uscs single-point crossover, which is paramectcerized by the probability
of crossover p.. The individuals in the parent population are randomly paired, and a crossover point is
randomly chosen for each pair. Those portions of the parent individuals following the crossover points are
exchanged with probability p, to form pairs of offspring individuals. In the following definition, and the

sequel, the set of permutations on {1,...,n} is denoted 7.

Definition 2.4.1 (Single-point crossover operator): Let A be a non-empty set (the genic alphabet ),

¢ € Z™" (the individual length ), I 2 A (the individual space), p = p' € Z™" (the population size), v = 5],

&

Q0= X [0,1) x{1,.... £ =1}V, w = (6, X,Y) ~ U(Q), and 7 : R — T (Q,T (I*,I*)) an evolutionary

operator. If for every p. € [0,1] (the probability of crossover), P € I*, i € {1,...,v}, and j € {1,...,¢}, 7

4A word on terminology is in order. In much of the GA literature, terms from evolution theory, biclogy, and genetics are
used (abused?) freely to refer to the computational concepts which they inspire. This tradition encourages anthropomorphizing
the algorithms, but in the interest of remaining consistent with the literature this research adopts the standard terminology.
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satisfies

[Pr2i—)]; i Xi>peorj<Y;
(Irp.(P2i-1); = ! ,
[PU(Z'L')]]' » Zf X; < Pe a'nd] >Y;

[Po2p]; . if Xi>peorj<V;
(Irp.(P))2i); = ! ’
[Pozi-n)); » o Xi <pe and j >,

and

[rp. (Pl = Pouy ifpisodd

then r is called a single-point crossover operator. O

Single-point crossover is illustrated in Figure 6. Note that single-point crossover is restricted to parents of

equal length.

Crossover Point

Parent 1:

Parent 2:

AN

Offspring 2:

Figure 6. A single-point crossover operator acting on a parent population of size p = 2.

2.4.2.2 Mutation. Mutation is viewed as a “background” operator by many genetic algorithm
researchers, which is very much in contrast to the view of the evolution strategies community. The simple

genetic algorithm uses a mutation operator called point mutation, which is parameterized by the probability
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of mutation p,,.> Each allele of each individual in the population is mutated with independent probability
D
Definition 2.4.2 (Point mutation operator): Let A be a non-empty set (the genic alphabet), £ € Z™
(the individual length), I 2 p (the individual space), p = p' € Z* (the population size), = [0, 1]#*¢ x
ARXE = (X,Y) ~U(Q), and m : R — T (Q,T (I“',I“/)> an evolutionary operator. If for every
Pm € [0,1] (the probability of mutation), P € I#', i € {1,...,p'}, and j € {1,...,£}, m satisfies

Y if Xij < pm, and

(Imp,. (P)]i); = ;
(Po); if Xij > pm

then m is called a point mutation operator. O

Point mutation is illustrated in Figure 7.

Mutation Point

Parent:

Offspring:

Figure 7. A point mutation operator acting on a population containing a single individual (the parent). A
single mutation point is depicted.

2.4.2.3 Selection. Holland’s original description of the genetic algorithm, on which the
simple genetic algorithm is based, specifies that cach individual’s sclection probability is proportional to its

fitness. Selection operators which exhibit this characteristic are referred to as fitness proportionate. Fitness

5There is some ambiguity regarding the term “probability of mutation.” In one convention, the allele of the parent individual
is included in the set from which the allele of the offspring individual is drawn. For this convention, a probability of mutation
pm = 1.0 specifies random search, regardless of the cardinality of the genic alphabet. In the other convention, the allele of the
parent individual is excluded. For this convention p,, = % specifies random search, where C is the cardinality of the genic
alphabet (which is assumed to be finite, else the point is moot). For convenience, the definition adopted in this research follows

the former convention. This is in contrast to the convention followed in the specification of the simple genetic algorithm [29].
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proportionate selection operators have no parameters other than the fitness function, and require that each

individual have positive fitness.

Definition 2.4.3 (Fitness proportionate selection operator): Lets e EVOP(I,p, T(I,R"),8) be a
selection operator. If for every P € I*, and fitness function @ : I — R™, the selection probaebility of each

individual a € P satisfies

psel(a; 8¢,P) = % ’

=1

then s s called @ fitness proportionate selection operator. O

The simple genetic algorithm uses a fitness proportionate selection operator called stochastic sampling
with replacement, also known as rouletie wheel selection [29]. The latter term is motivated by imagining that
each individual is assigned an arc on the perimeter of a roulette wheel, the length of which is proportional
to the individual’s fitness. Members of the offspring population arc sclected by “spinning the wheel,” and
including in the offspring population a copy of the individual within whose arc the roulette ball lands. The

spins of the wheel correspond to the components of the random vector w in the following definition.

Definition 2.4.4 (Stochastic selection with replacement operator): Let Q = [0,1)%, w ~ U(),

s € EVOP(IL,p, T(I,R"),Q), and

A .
o(k;s,®,P) = min {j 211 Pset(Pji 58, P) > wk}

If for every fitness function ® : I — R™ and every population P € I#, s satisfies

[S(P)]l = PU(i;s,<I>,P) )

then s s called a stochastic selection with replacement operator. O
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2.4.8 Algorithmic Specification. The preceding sections describe the individual space and each of
the cvolutionary operators of a simple genctic algorithm. This section specifies the simple genetic algorithm

in the formal framework developed in Section 2.3.

Definition 2.4.5 (Simple genetic algorithm): Let

o L €Z™ (the indiwidual length),

Is {0,1}*¢ (the individual space),

ty € Z* (the final generation),

w=p €ZT (the population size),
o &:1 — R a fitness function,

o o: U2, (I*)! — {true false} (the termination criterion) such that

f{{P(0),...,P(t)}) = true < card ({P(0),...,P(t)}) > tr ,

r € EVOP(I, 1, R,LQ,.) a single-point crossover operator,

m € EVOP(I, 1, 1,2,,) a point mutation operator,

o s:T(I,RY) — T (Q,T (I*,I*)) a stochastic selection with replacement operator, and

e 0,0, cR.

Then the algorithm shown in Figure 8 is called a simple genetic algorithm. O

Although the simple genetic algorithm is in widespread use as an optimum seeking technique, it suffers
from at least two significant disadvantages in this application compared to other evolutionary algorithms.
One drawback is that its effectiveness with respect to a given application depends on the decoding function.
In particular, the cffectivencess typically depends on the “order” in which the gences arc mapped to the object

variables of the objective function. Because the order is fixed, the simple genetic algorithm possesses no
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t:=0;

initialize P(0) := {a1(0),...,a,(0)} € I*;

while (L({P(O), ..., P(t)}) # true) do
recombine: P'(t) :=rg_(P(t));
mutate: P"(¢) := me, (P'(t));
select: P(t+ 1) := sa(P"(¢));
t:=t+1;

od

Figure 8. Outline of a Simple Genetic Algorithm

mecchanism by which to detect “linkage” between strongly intcracting genes and adapt the representation

scheme accordingly.

Another limitation of the simple genetic algorithm is that its effectiveness also depends on the fitness
scaling function. This dependence is directly attributable to the use of fitness proportionate selection. This
relationship is addressed in more detail in Section 2.5, where it is also shown that algorithms using order-

bascd sclection operators do not sharc this disadvantage.

2.5 Invariance Properties of Selection Operators

The set of evolutionary operators employed by an evolutionary algorithm determines the effectiveness
of the algorithm for a given application. This section identifies several properties which characterize certain
selection operators, and which relate to the effects those operators have on an algorithm’s effectiveness and
efficiency. Most importantly, the class of strictly invariant selection operators is defined and shown to be
equivalent to the class of order-based selection operators. All linkage-friendly genetic algorithms (defined in

Section 2.6) use selection operators of this type.

If two functions f : R® — R and f : R* — R are related by f() =af(-)+bwherea,b € Rand a > 0,
then f and f share the same (local and global) maxima and minima, as well as other important properties.
Intuitively, a desirable characteristic for an optimum seeking technique is that it be equally effective with
respect to such functions. This characteristic is closely related to the selection operator properties of scale

invariance and translation invariance. These properties are defined by de la Maza and Tidor [15], although
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their implications for commonly used genetic algorithm selection operators are well understood in earlier

studies (see Grefenstette and Baker [40], for example).

The following definitions are equivalent to those proposed by de la Maza and Tidor. A selection
operator is scale invariant if the selection probabilities which it assigns are preserved when the fitness function

is multiplied by a positive scalar.

Definition 2.5.1 (Scale invariant selection operator): Let s € EVOP(I, 1, X x T(I,R),Q) be a
selection operator. If for every @ € X, every fitness function ® : I — R, every population P € I*, every

individual a € P, and every ¢ € R

psel(a; S(G),<I>),P) = psel(a; 5(®,c<1>)ap) 9

then s is called a scale invariant selection operator. O

All selection operators in common use are scale invariant. In contrast, some commonly used selection
operators, including all fitness proportionate operators, are not translation invariant. A selection operator is
translation invariant if the selection probabilities which it assigns are preserved when a constant (function)

is added to the fitness function.

Definition 2.5.2 (Translation invariant selection operator): Let s € EVOP(I, 1, X x T(I,R), ) be
a selection operator, and v : I — R such that u(a) 21 for every a € 1. If for every © € X, every fitness

function ® : I — R, every population P € I*, every individual a € P, and every ¢ € R

psel(a; 5(@,@)7P) = psel(a; 5(®,<I>+cu)7P) ’

then s is called a translation invariant selection operator. O



The use of selection operators which are not translation invariant, including those which are fitness propor-
tionatc, lcads some rescarchers to develop a large body of cmpirical knowledge regarding appropriate fitness

scaling functions for various applications (see Michalewicz [57], for example).

In contrast, this research is primarily concerned with selection operators which are translation invariant.
More specifically, it is concerned with the class of selection operators which are invariant under every strictly

increasing transformation.

Definition 2.5.3 (Strictly invariant selection operator): Let s € EVOP(I, 1, X x T(I,R),Q) be a
selection operator. If for every @ € X, every fitness function ® : I — R, every population P € I*, every

individual a € P, and every strictly increasing function g : R — R

psel(a; 5(®,<I>)7P) = psel(a; S(G),go@)aP) s

then s is called a strictly invariant selection operator. O

Because functions of the form f(z) = az + b are strictly increasing when @ > 0, strict invariance implies

both scale and translation invariance. This is stated formally in the following theorem:

Theorem 2.5.4 Let s be a strictly invariant selection operator. Then s is scale invariant end translation

invariant.

Proof: By the definition of a selection operator, s € EVOP(I, 1, X x T(I,R),§2) for some non-empty set
I, p € Z*, set X (the parameter space), and set 2 (the sample space). Let © € X, ®: I — R, P € I*, and

aeP.

Let ¢ € R™ and define ¢ : R — R by g(=) £ ¢z. Then g 1is strictly increasing. Because s is
strictly invariant, psei(a; s(e,0) P) = Psel(a; S(0,g00)s P) = Dsei(a; 5(0,ca), P). Because ©, &, P, a, and c are

arbitrary, s is scale invariant.
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Let ¢ € R and define ¢ : R — R by g(x) é:z—{—c, and » : I — R such that u(a) 21 for every a € 1.
Then g is strictly increasing, so that psei(a; s(@,8), P) = Psei(@; 5(0,g08), P) = Psei(@; 5(@,04cu)s P). Because

O, ®, P, a, and c are arbitrary, s is translation invariant. [ |

The following thcorcm statcs that strictly invariant sclection opcrators nccessarily assign sclection

probabilities based solely on the (possibly partial) ordering induced on the individual space by the fitness
function, and that all selection operators which assign selection probabilities in such a manner are strictly

invariant.

Theorem 2.5.5 A selection operator is strictly invariant if and only if it is order-based.

Proof: Let s be a selection operator. Then by the definition of a selection operator, s € EVOP(I, u, X X

T(I,R),Q) for some non-empty set I, u € Z™, set X (the parameter space), and set  (the sample space).

“If”: Suppose s is an order-based selection operator. Let ® € X, & =T, 0fo D : I — R a fitness
function, P € I#, a € P, and g : R — R strictly increasing. Define f E Tso f. Then & = fo D. Also,
D: I — R” and f :R™” — R for some n € N. Furthermore, by Lemma 2.3.4, g is an order-preserving
fitness scaling function. Thus, by the definition of an order-based selection operator, ps.(a; so,¢), P) =
Psel(a; 5(®,foD)’P) = psei(a; 5(®,gofoD)vP) = pset(@; 5(@,g0w), P). Because ©, @, P, a, and g are arbitrary, s

is strictly invariant.

“Only if”: Suppose that s is strictly invariant. Let @ €e X, D : I — R™ for somen € N, f: R" — R,
T; : R — R an order-preserving fitness scaling function, P € I*, and a € P. Also, let ¢ : R — R be
the identity mapping, and define ¢ =S gofoD. Then foD =gqgo foD = ®. Also, by Lemma 2.3.4, T}
is strictly increasing. Thus, by the definition of a strictly invariant selection operator, psei(a; s(o,fony, P) =
Dsel(a; 50,0), P) = Psei(@; 5(0,1,08), P) = Psel(@; $(0,7,0f00), P). Because ©, D, f, Ty, P, and a are arbitrary,

s is order-based. [ |
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In light of this theorem, it is not surprising that in practice algorithms which use order-based selection
operators rarely use (nontrivial) fitness scaling functions. This section concludes with the observation that

order-based selection operators are necessarily scale and translation invariant.

Corollary 2.5.6 Let s be an order-based selection operator. Then s is scale invariant and translation

nvariant.

Proof: By Theorem 2.5.5, s is strictly invariant. By Theorem 2.5.4, s is scale invariant and translation

invariant. [ |

2.6 Linkage-Friendly Genetic Algorithms

The cffectivencss of the simple genctic algorithm with respect to a given application depends on the
specified decoding function. In particular, the effectiveness depends on the “order” in which the genes are
mapped to the object variables.® The effectiveness also depends on the specified fitness scaling function.
These dependencies lead researchers to consider another class of evolutionary algorithms, which lack these

dependencies. In this research, these algorithms are collectively called linkage-friendly genetic algorithms

(ifGAs).”

Historically, the dependcence of the simple genetic algorithm’s effectivencess on the decoding function
motivated Goldberg, et al. [36] to propose the messy genetic algorithm (mGA). Later, efficiency considera-
tions motivated the development of the fast messy genetic algorithm (fmGA) [35]. More recently, Kargupta
extended the fmGA to give explicit consideration to the equivalence class competitions conducted, resulting
in the gene expression messy genetic algorithm (gemGA) [45]. The representation scheme shared by the mGA
and fmGA (Section 2.6.1), as well as the representation scheme of the gemGA, is such that the effectiveness

of each algorithm is independent of the “order” in which genes are mapped to object variables.

6This fact follows immediately from Holland’s Schema Theorem [43].
"The term “linkage friendly genetic algorithms” is due to Goldberg [30].
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The recombination, mutation, and selection operators used by the mGA and fmGA are discussed
in Section 2.6.2. The selection operator used by both algorithms (and by the gemGA) is such that the
effectiveness of each is independent of the fitness scaling function. The general evolutionary algorithm
framework developed in Section 2.3 is used to formally specify the mGA and fmGA (Sections 2.6.3 and
2.6.4, respectively). The section concludes with a review of existing fmGA parameter selection techniques

(Section 2.6.5).

2.6.1 Representation. Linkage-friendly genetic algorithms as defined in this research share a
common rcprescutation scheme. In contrast to the representation scheme used in simple genctic algorithms,

loci are represented explicitly and individuals are not necessarily of uniform length.

Definition 2.6.1 (Linkage-friendly genetic algorithm (IfGA) individual space): Let A be a non-
empty set (the genic alphabet), £ € Z* (the nominal string length), £ = {1,...,4} (the loci), and 0 € R

such that o > 1 (the overflow factor). Then

lo-£] lo-£]
T2 [JAxo)P = |J @ x o)
A=0 A=0
is colled an fGA individual space over A. O

Each a; € A is an allele, each I; € £ is a locus (plural loci), and each ordered pair (a;,!;) is a gene (c.f.
Section 2.4.1). Thus, an IfGA individual x € I may be viewed as a vector ((a1,11),...,(ax, 1)) of allele-locus
pairs for some A € {0,...,|o- £} (the string length or individual length). Alternatively, an IfGA individual
may be viewed as an ordered pair of equal length vectors x = (a,1) = ((ay,...,ax), (l1,...,1))) € A} x L.

This research uses the two views interchangeably as convenient.

Given an individual (a,1) = ((a1,...,ax),(l1,...,1))), a locus L may occur zero, one, or more times in
1. This implies that individuals need not completely specify a candidate solution, and also that individuals
may overspecify components of candidate solutions. In non-overspecified individuals each locus occurs no

more than once (i.e. l; = l; <= ¢ = j), hence such individuals have lengths A € {0,...,£}. It is convenient
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to define the set of length A non-overspecified individuals

—_
—
o
[
p—
Il

((al,...,a)\),(ll,...,b\))EI:li=lj<=>z':j} . (2)

An individual (a,l) is fully specified if each locus occurs exactly once, i.e. if (Vi € £)(3lj € L)[l; = ¢]. The
set of fully specified individuals is thus Ip e I(#). There is of course a “natural decoding” I'p : I — Af
which, given a fully specified individual, produces an {-vector of alleles representing a candidate solution.®

More generally, given a fully specified individual ¢ € Ip, referred to as a competitive template, the overlay

mapping associates every individual x € I (fully specified or otherwise) with an f-vector of alleles.

Definition 2.6.2 (Overlay mapping): Let I be an [fGA individual space over the genic alphabet A with
nominal string length £, and Ip = I(¢) defined by Equation 2. The mapping T : I x Ir — A* such that for

each i € {1,..., 4}

aj, if g 2 min{k : lp =4} exists

ne-

[F((a7 l)? (bvm))]l
b; where mj; =1, if Vh:il#1

is called the overlay mapping for I. O

The association of each individual x € I with a vector of alleles via the overlay mapping may be
thought of as the first step in assigning a fitness to x. Subsequent steps include mapping the vector of alleles
to the parameter space of the objective function, evaluation of the objective function, and possibly fitness

scaling. The composition of these mappings is the IfGA fitness function.

Definition 2.6.3 (Linkage-friendly genetic algorithm (IfGA) fitness function): Let I be an IfGA
individual space over the genic alphabet A with nominal string length £, Ip = I({) defined by Equation 2,
I':1IxIp — A* the overlay mapping for I, D : A* — R™ (the fGA decoding function), f : R® — R (the

objective function), Ts : R — R (the fitness scaling function), and ® £ TsofoDol':IxIp — R. Then

8In particular, define T'r : Ir — A such that [['(a,1)]; 2 a;, where [; = i.
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®(x,c) denotes the fitness of x € I with respect to ¢ € Ir. Furthermore, given ¢ € Ip define @.: I — R

by ®c(4) = ®(-,c). Then O, is called an {GA fitness function for I. O

Of course, an IfGA fitness function ®. may be written as the composition T, 0 f o D, : I — R, where
D.(") = D(T'(-,c)). Thus, IfGA fitness functions are fitness functions in the sense of Definition 2.3.2. Finally,

description of specific linkage-friendly genetic algorithms is considerably simplified by the following definition.

Definition 2.6.4 ({(Order-k) potential building block): Let A be a non-empty set (the genic alphabet ),
£ € Z* (the nominal string length ), £ = {1,...,4} (the loci), and S £ {(a1,11), ..., (ax, 1)} € 24F @ set
of genes. If the loci of 8 are distinct, i.e. S satisfies i = j <= [; =1, then it is called an order-k potential

building block or simply a potential building block. O

2.6.2 Genetic Operators. This section discusses the recombination, mutation, and selection op-
erators used by the messy genetic algorithm (mGA) and fast messy genetic algorithm (fmGA). Both the
mGA and the fmGA process individuals of non-uniform length, and consequently require a more general
recombination operator than single-point crossover. The recombination operator proposed by Goldberg, et

al. [36] is called the cut-and-splice operator (Section 2.6.2.1).

This research does not formally define the mGA mutation operator, which is analogous to the point
mutation operator of the simple genetic algorithm, because all reported mGA experiments use a zero proba-
bility of mutation. In contrast, the fmGA uses a building block filtering operator (Section 2.6.2.2) which this

research views as a mutation operator.

Finally, Section 2.6.2.3 formally defines the binary tournament selection with thresholding operator,
which is order-based and used by both the mGA and the fmGA. Because it is order-based, the effectiveness

of each algorithm is independent of the fitness scaling function.

2.6.2.1 Recombination. The individual spaces of linkage-friendly genetic algorithms consist
of individuals of non-uniform length (see Definition 2.6.1). Thus, the single-point crossover operator used

in the simple genctic algorithm is not directly applicable in linkage-friendly genctic algorithms. The cut-
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and-splice operator is a recombination operator which processes individuals of non-uniform length and is
othcrwisc similar to single-point crossover. It is convenient to define the cut-and-splice opcerator in terms of

the composition of distinct cut and splice operators.

A cut operator maps pairs of individuals (the parents) to 4-tuples of individuals (the fragments). For

a=(a,...,ay) € (AxL)*, the following definition denotes by a;.; the fragment (a;,...,a;) € (Ax £)7 7"

where 1 < ¢ < j < A. Some fragments may be trivial, i.e. of length 0; these are denoted {}.°

Definition 2.6.5 (Cut operator): Let I be an lfGA individual space, @ 2 [0,1]*, w & (Xa, Xy, Ve, Vi) ~
U(Q), and k : R — T(Q,T(I?,I*)) an evolutionary operator. If for every p. € [0,1] (the cut probability ),
every (a,b) € (A x L)% x (A x L£)* C I? (the parents), Y, 2 [(Ag—1)- Ya-| and Y} S [(Ap—1)- Yb] (the

cut points), & satisfies

(aleaaaYa—I—l:)\aabl:Ybabe—i—l:)\b) 3 lf /\a/\b > 0; Xa S De, and Xb S DPe
(aleavaYa+1:)\aaba{}) ) lf /\a > 0; th S DPe; and

either Ay =0 or X3 > p.

A
Fp.(a,b) = ¢ (a,biy,, by, 110, {}) Lif A >0, X < pe, and ;
either Ay = 0 or Xg > pe
(a,b, {},{}) ,if either A\g = 0 or X > pe, and
either A\p = 0 or X3 > p.
\
then k is called a cut operator. O

A splice operator maps 4-tuples of individuals (the fragments) to n-tuples of individuals (the offspring),
where n € {2,3,4}. In the following definition, if a = (a1,...,a,) € (A x L) and b = (b1,...,by,) €

(A x L£)* are fragments, then the offspring (a1,...,ax,,b1,...,by,) is denoted ab.

9This notation is counsistent with the view of an HGA individual x € (A x £)™ as equivalent to the sequence of n allele-locus
pairs which it implicitly defines. By the definition of a sequence (see Apostol [3]), x is then a function, i.e. a set of ordered
pairs, {(1,z1),...,(n,z,)}, where each z; € A X L is an allele-locus pair. Suppose n = 0. Then, x is the empty set of ordered
pairs.



Definition 2.6.6 (Splice operator): Let I be an lfGA individual space, @ 2 [0,1]°, w 2 (Xap, Xpey Xod) ~
UQ), and ¢ : R — T(Q,T(I*, 12 U P UT*)) an evolutionary operator. If for every ps € [0,1] (the splice

probability ), and every (a,b,c,d) € I* (the fragments), { satisfies

(ab, cd) s if Xap < ps and Xog < ps

(ab7 c, d) ’ Zf Xa,b S Ds and Xcd > Ps

N
(p.(a,b,c,d) = (a,bc,d) , if Xop > ps and Xy < ps ;
(a,b,cd) , if Xap > Ps, Xve > ps, and Xeqg < ps
(a,b,c,d) , if Xap > ps, Xpe > Ps, ond Xeqg > ps
then { is called a splice operator. O

A local cut-and-splice operator'® is an evolutionary operator which produces population transformations
expressible as the composition of the population transformations resulting from a cut operator, a permutation
of the resulting fragments (possibly depending on the parameters and random events of the cut operator),

and a splice operator.

=3

Definition 2.6.7 (Local cut-and-splice operator): Let I be an IfGA individual space, Q = [0,1]* x

0,13, w = (Weyws) ~ U(R), & a cut operator, o : R x [0,1]* — w4, ( a splice operator, and 7' : R? —

T(Q, T2, 12U UI*Y)) an evolutionary operator. If r' satisfies

[rp. p.) (@)](2,B) = [, (ws)] (([ﬂpc(wc)](a,b))[cr(pc,wc)](l)v o ([ﬂpc(wc)](a,b))[cr(pc,wc)]m)) ,

then 1’ is called a local cut-and-splice operator. O

10With respect to both recombination and mutation operators, Back and Schwefel [7] distinguish between “macro-operators”
(equivalent to the “population transformations” defined in this research) and “local operators,” which map populations to
individuals. Informally speaking, local operators capture the low-level, essential behavior of the corresponding macro-operators.
Consequently, specific recombination and mutation operators are often defined in terms of local operators.

Strictly speaking, the local cut-and-splice operator defined in this research is not a local operator in the sense of Back and
Schwefel, because it produces more than one individual.



The permutation mapping o in Definition 2.6.7 is arbitrary. Different mappings correspond to different local
cut-and-splice operators and result in different sets of potential offspring. Goldberg, et al. [36] propose a local

cut-and-splice operator, for which the potential sets of nontrivial offspring!! are illustrated in Figure 9. The

Parents
1
N
Parents Cut Fragments Potential Sets of Nontrivial Offspring
Both
First
Second
Neither

Figure 9. Potential Nontrivial Offspring Resulting From Goldberg’s Local Cut-and-splice Operator

permutation mapping of Goldberg’s local cut-and-splice operator is intended to closely resemble the behavior

of singlc-point crossover for individuals of length closc to the nominal string length.

Definition 2.6.8 (Goldberg’s local cut-and-splice operator): Define o : R x [0,1]* — 74 by

(1747372) b Zf Xa, S Pec and Xb S Pec

>

0 (pe,we) (1,2,3,4) , if Xo > pe and X3 > pe

(1,3,2,4) , otherwise

LetI, Q, w, s, (, and v’ be as in Definition 2.6.7. Then ' is called Goldberg’s local cut-and-splice operator.

O

11In practice, only nontrivial individuals are included in the offspring population.



A cut-and-splice operator is an evolutionary operator which extends a local cut-and-splice operator
to operate on populations of arbitrary size (i.e. a macro-operator corresponding to a local cut-and-splice
operator). In contrast to the situation with single-point crossover, for which every pair of parents results in
exactly two offspring, a local cut-and-splice operator probabilistically results in between 1 and 4 offspring
for each pair of parents. Because of this uncertainty, it is convenient to recursively define the population

produced by a cut-and-splice operator.

Definition 2.6.9 (Cut-and-splice operator): Let I be an I[fGA individual space, p € Z (the parent
population size), y' € Z™T (the offspring population size), £ = [27“,1, e Wf» x ([0,1]* x [0,1]})*, w £

(o1, 0¢), (w1, ... ww)) ~U(Q), v’ a local cut-and-splice operator, r € EVOP(I, 1, R?,Q), and

r

P Cif k=0
#(P’540,%0,F — 1, k5 P, pe, Ps, w) ,ifk>0andi=0
7“( P'U{Ps, )

i0,i0 g — 1,k — 1;
P(P'sio, i,k Pypeypsyw) 2 P, pe,ps,w ) Lifk>0andi=1
P'U{Qn,...,Qx}
f( P U{Q1,...,Qd¢maql;

f0<k<4dandi>1

-

i0,5 — dim Q, j, k — dim Q;

ifk>0andi>1

-

P,pe,ps,w )
(3)

where Q = (Q1,...,Qdimq) denotes the offspring [TEpc,ps)(wi)](Poj(i)aPcr,-(i—l)) of an invocation of v'.
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If for every p. € [0,1] (the cut probability ), every ps € [0,1] (the splice probability ), and every P € I+

(the parent population), r satisfies

Twow)(P) = F({}s o s & 43 Pype, ps,w)

then r is called a cut-and-splice operator. If 7' is Goldberg’s local cut-and-splice operator, then 7 is called

Goldberg’s cut-and-splice operator. O

2.6.2.2 Mutation. The fast messy genetic algorithm uses a building block filtering (BBF)
operator, which this research views as a mutation operator. The resulting population transformations map
parent populations P € I(Xg) to offspring populations P’ € I(Af) where Ay < Xg. The mapping “deletes”
A¢ — Ay randomly chosen genes from each individual in P. The genes to be deleted from each individual are
chosen uniformly without replacement. Equivalently, the genes to be retained are chosen uniformly without

replacement. It is convenient to define the BBF operator in terms of the local BBF operator.

Definition 2.6.10 (Local building block filtering operator): Let I be an IfGA individual space over

genic alphabet A with nominal string length £,

Qé{&eT({O,...,l},Um) :6(i)e7ri} :

w ~ U(Q), and m' € EVOP(I,1,{0,....£},Q) an evolutionary operator. If for cvery Ay € {0,...,£4} (the

offspring individual length ), and every a = ((a1,l1),...,(@x,0x,)) € I, m satisfies

m}, (@) = (ajo )W) LI+ - (@or ) TwOION))

then m' is called a generalized local building block filtering operator. O

A local BBF operator is illustrated in Figure 10.
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Genes selected for deletion

Parent:

L\
-

Offspring: [N

Figure 10. Local Building Block Filtering Operator

Definition 2.6.11 (Building block filtering operator): Let I be an I[fGA individual space with
nominal string length ¢, p = p' € Z (the population size), Ay € {1,...,£} (the parent individual length ),
I(Xo) defined by Equation 2, §) = ([0,1]2)*, w = (wiyeooywy) ~ U(Q), m' a local BBF operator, and
m N — T(Q T, (I(Af)*)) an evolutionary operator. If for every Ay € {0,..., Ao} (the offspring

individual length ), every P € (I(X\o))* (the parent population), and every i € {1,..., '}, m satisfies

[ma, (P))i = m), (F)

then m is called a building block filtering operator. O

Because the offspring individual lengths Ay are deterministic (and identical for all individuals in the offspring
population), this research sometimes refers to building block filtering operators as deterministic building block
filtering operators. This is in contrast to probabilistic building block filtering operators, which are defined in

Chapter III.

2.6.2.3 Selection. Both the messy genetic algorithm and the fast messy genetic algorithm
use a selection operator called tournament selection. In its most general form, tournament selection can be

described as follows:
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1. Randomly draw q competing individuals from the current population.
2. Rank the competing individuals according to fitness.
3. Randomly draw one of the individuals (the winner) and include it in the next population.

By far the most frequently encountered form of tournament selection is binary tournament selection (BTS),

for which ¢ EP)

Definition 2.6.12 (Binary tournament selection operator): Let I be a non-empty set (the individual
space), p € ZT (the parent population size), p' € ZT (the offspring population size), Q E ({1,... ,M}Z)“’,

AN
w =

((wo(1)y w1 (1))y- .oy (wo(p)ywi(p)) ~ U(Q), and s € EVOP(I,u, T(I,R),Q). If for every fitness
function ® : I — R and every population P € I*, s satisfies

Pooiy » if ®(Pug(iy) 2 2(Puy()
[sa(P)]l; = )

Pwl(i) b) Zf(}(th(Z)) > (P(Pwo(l))

then s is called a binary tournament selection operator. O

Many variations of tournament selection are in common use. Some variations differ in the method by
which the competing individuals are drawn from the population. If they are drawn without replacement,

then they are typically drawn from a single “copy” of the population.

Other variations differ in the method by which the winner is drawn from the competing individuals.
Typically, the winner is the most fit of the competing individuals (in which case implementation of the
ranking step is unnecessary). Variations in which the winner is chosen according to some (non-trivial)

probability density function defined on the rankings are called probabilistic tournament selection [33].

Finally, some variations use thresholding, which restricts the choice of competing individuals to those
which are compatible with each other [36]. Individuals are considered compatible if they are sufficiently

similar.



Definition 2.6.13 (Individual similarity, 8-compatible): Let I be a non-empty set (the individual
space). Then a mapping d : I> — N is called an individual similarity. Let a,b € I and 0 : I> — N (the

threshold mapping). If d(a,b) > 6(a,b) then a and b are §-compatible. O

For efficiency, implementations of BTS typically consider a maximum of ngj, € Z™ (the shuffle size) individ-

uals in seeking a compatible second individual.

Definition 2.6.14 (Binary tournament selection with thresheolding operator and finite shuffle
size ngp): Let I be a non-empty set (the individual space), £ € Z+, i € Z+ (the parent population size),

W' € ZT (the offspring population size), nsp, € Z™T (the shufile size), = ({1,..., p}mer ),

e

w

(wo(1),- .- swng, (1)), - (wO(P‘I)" <oy Wng, (P‘I)) ~U() ,

d an individual similarity, and s € EVOP(I,p, T(I%,N) x T(I,R),Q). Also, define j : {1,...,p4'} x

T(I%2,N) — {0,...,ns} by

2 0, if (VE)A(Pogiys Puor(iy) < 0(Pug(is Paoriy)]

min{k : d( Py (i) Puyiy) = 0(Pug(iys Pur(s))} » otherwise

If for every @ : I — N (the threshold mapping), every fitness function ® : I — R, and every population
P € I*, s satisfies

Pwoi ;lfq)(PwOZ)Z@(sz 7,)
[s¢6,2)(P)l: = @ () i(i.0)(3) 7

ij(is)(i) , otherwise

then s is called a binary tournament selection with thresholding operator. O

Because each is order-based, BTS and BTS with thresholding are examples of strictly invariant selec-
tion operators (see Section 2.5). Consequently, for evolutionary algorithms using either BTS or BTS with

thresholding, effectiveness is unaffected by the choice of (order-preserving) fitness scaling function.
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2.6.8 Messy Genetic Algorithms. The dependence of the simple genetic algorithm’s effectiveness
on the “order” in which the genes are mapped to the object variables motivated Goldberg, et al. to propose
the messy genetic algorithm (mGA) [31, 32, 36]. The mGA uses the order-invariant representation scheme
defined in Section 2.6.1, as well as the strictly invariant BTS with thresholding operator. The algorithm
is designed to obtain, with high probability, an order-%# optimal individual (i.e. a fully-specified individual
for which the fitness cannot be improved by changing & or fewer alleles), given an order-(k — 1) optimal

competitive template. The parameter k is called the building block size.

Goldberg, et al. [31] suggest that the algorithm be applied iteratively for 1 < k < kyax, using the best
individual found in iteration & — 1 as the competitive template for iteration k. They also suggest [36] that
kmax De “chosen to encompass the highest order deceptive nonlinearity suspected in the subject problem.”2

Such an estimate is typically not available. This author suggests that ky,,x must be viewed as controlling a

tradeoff between expected solution quality (effectiveness) and execution time (efficiency).

The mGA consists of the initialization, primordial, and juztapositional phases (see Figure 11). In the
initialization phase, a deterministic technique called Partially Enumerative Initialization (PEI) produces an
initial population containing at least one “copy” of each order-k potential building block. That is, for each
order-k potential building block {(a1,!1),..., (ak, %)}, the initial population contains at least one individual

of the form a = ((ae)>lo())s > (@o(r)s lo(r))), Where o is a permutation on {1,...,k}. The usual initial

12The class of deceptive functions may be defined as follows (without loss of generality, a maximization problem is assumed).
AN A A
Let I = {0,1}¢, L ={1,...,£}, ® = fo D : I — R such that there exists a global maximum f(X) of f, D is one-to-one, and

(34 € I)[D(4) = %]. Also, for each schema (plural schemata) h = (hy,...,he) € {0,1,#1}¢ define o(h) 2 card (e e L:h; ##})
and

AN .
Sth)y={a=(a1,...,a0) €I : (Vi € L)[hi = # V a; = hs]} .
If S(h) contains 4 and the individuals in S(h) have lower average fitness than the individuals in S(h’) for each of the “competing”
schemata h', i.e. if

) ne
(5 S(h) AR ESM))A(h; = # < hl = #) = (Z"‘es“‘) () Zacsw (a)> ,

card (S(h)) card (S(h'))
then f is called deceptive with respect to h. The order of deceptiveness of f is max{o(h) : f is deceptive w.r.t. h}, and f is
order-k fully deceptive if f is deceptive with respect to every schema h such that & € S(h) and o(h) < k.

Grefenstette [39] shows “that deception is neither necessary nor sufficient to make a problem difficult for GAs.” This result
in no way argues against the use of either order-invariant representations or strictly invariant selection operators.
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Figure 11. Messy Genetic Algorithm Flow Chart

population is

P(0) 2 {((an,h)s - (anyBi)) € I(k) il < o= < L4}

For a nominal string length £, and a necessarily finite genic alphabet A, the initial population contains

W £ feara () )

individuals. Consequently, for the usual case of £ >» k, the algorithmic complexity of the initialization phase
is O([f - card (A)]*), which is also the complexity of the overall algorithm. For & > 3, 4(*) is much larger

than typical simple genetic algorithm population sizes.

The primordial phasc is designed to transform the initial population into a population of individuals
P(ty) C I(k) which can bec processed cffectively and cfficiently in the juxtapositional phasc. The only operator
used in the primordial phase is binary tournament selection with thresholding, with periodically decreasing

offspring population sizes.'®> The individual similarity @ used by the mGA is such that, for each pair of

13 Goldberg, et al. suggest that the competing individuals be drawn without replacement [36].
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Figure 12. Two mGA individuals are depicted as vectors of allele-locus pairs. The individual similarity is
the number of loci which occur at least once in each individual.

individuals (a,1) = ((a1,...,ax,),(l1,-..,0x,)) € A% x L2 and (b,m) = ((by,...,by,), (M1,...,my,)) €
A*e x b

8((a,1), (b,m)) £ card ({I1,..., 15, } N {m1,...,mr}) .

This is illustrated in Figure 12. The number of common defining loci of individuals a ~ U(I(A,;)) and
b ~ U(I(X)) is a random variable X with the hypergeometric probability density function h(-; Ag, As; £).
Individuals of length A, and X are considered compatible if they share at least £ [X] = AqAs/¢ common

defining loci.

Finally, the juxtapositional phase uses Goldberg’s cut-and-splice operator, as well as BTS with thresh-
olding. Cut and splice probabilities are chosen to promote rapid increase of the individual length from k& to

£ [36]. The individual similarity and threshold mapping are the same as those used in the primordial phase.

Definition 2.6.15 (Messy genetic algorithm): Let

o I be an IfGA individual space over the genic alphabet {0,1} with nominal siring length £ and overflow

factor o,
e I(}\) defined by Equation 2,

e ke {l,...,£} (the building block size),
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e ity € Z™ (the final generation),

e t, €{0,... %7} (the final primordial phase generation ),

o 1 224(p),

. {M(t)}?:o C ZT a non-increasing sequence (the parent population sizes ),
. M’(t) e p*Y) for t € {0,...,t; — 1} (the offspring population sizes ),
ecelp = I(?) (the competitive template),

o &.: 1 — R an IfGA fitness function,

o 1: U2, (I#)" — {true,false} (the termination criterion) such that

J{P(0),...,P(t)}) = true <= card ({P(0),..., P(£)}) > t5 ,

® 7 a sequence {’l"(t)} of Goldberg’s cut-and-splice operators v : R2 — T (ng),’f <I“(t),f“(t)>),
® M a sequence {m(t)} of identity evolutionary operators,

® s a sequence {s(t)} of BTS with thresholding operators

sO T2, N) x T(I,LR) — T <Qgt)77 (I“(t),l“'(t)>) :

o ) =pP L0 for0<t<t,,
e 0 £ (p§t>,p§t)) € R? for 0 < t < t; (the cut-and-splice parameters), and

o the threshold mapping 0 : I> — N defined such that for a € (A x £)*« and b € (A x L)

Then the algorithm shown in Figure 138 is called a messy genetic algorithm.
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t:=0;

initialize P(0) := {a1(0),...,a,0(0)} ={a= ((a1,h),...,(ar, ) € I(k) : Iy < --- < I}

while (:({P(0),...,P(t)}) # true)
recombine: P'(t) := re(rt)(P(t));
mutate: P"(¢) := m(P'(t));
select: P(t+ 1) := s¢p,0,)(P"(t));
t:=t+1;

od

Figure 13. Outline of a Messy Genetic Algorithin

2.6.4 Fast Messy Genetic Algorithms. The large initial population size of the messy genetic
algorithm and the corresponding algorithmic complexity motivated Goldberg, et al. [35] to propose the fast
messy genetic algorithm (fmGA), which is illustrated in Figure 14. The initial population of the fmGA is
constructed using a technique called Probabilistically Complete Initialization (PCI), which randomly samples
individuals from I(¢'), where ¢' 2 ¢ — k. The population size is chosen according to the population sizing
relation of Goldberg, et al. [34], so that each order-k potential building block receives an expected number

of “copies” sufficient to overcome sampling noise with specified probability.'*

The goal of the fmGA primordial phase is the same as that of the mGA primordial phase, i.e. to obtain
a population of individuals P(t,) C I(k), some of which can with high probability be juxtaposed to obtain
an order-k optimal individual. Because the initial population consists of individuals P(0) C I({'), building

block filtering (BBF) is used to periodically reduce the lengths of the individuals (it is assumed that ¢/ >> k).

Definition 2.6.16 (Fast messy genetic algorithm): Let

o 1 be an IfGA individual space over the genic alphabet {0,1} with nominal string length £ and overflow

factor o,
e I(A) defined by Equation 2,

e ke {l,...,£} (the building block size),

14In this context, a “copy” of the order-k potential building block {(a1,l1),...,(ax,l;)} is an individual of the form
((@o(1yslo(1))s - - 1 (@o (ks lo(k))), Where @ is a permutation on {1,...,£}.
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Figure 14. Fast Messy Genetic Algorithm Flow Chart

ty € ZT (the final generation),

t, € {0,...,t¢} (the final primordial phase generation),

A© 24 _ & (the initial individual length ),

(XY {k,...,£ — k} a non-increasing sequence (the individual lengths),

a € [0,1] (the probability of selection error),

zZo € R such that Z ~ N(0,1) = P1[Z > z,] =1 — q,

B% € Rt (the mazimum inverse signal-to-noise ratio per sub-function to be detected),

o=y 2 eé(f__kz)fz)!inﬁz([%] — 1)2* (the population size),

celp = I(?) (the competitive template),

®.: 1 — R an IfGA fitness function,
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o i: U2, (I*)! — {true false} (the termination criterion) such that

J{P(0),...,P(t)}) = true <= card ({P(0),..., P(£)}) > t5 ,

® T a SEQUENCE {r(t)} of Goldberg’s cut-and-splice operators ¥ : R? — T (Qg),'f <I”(t),I“(t)>),
o m a sequence {m D} of evolutionary operators,

o for0<t<ty, mY:N—T (Q%),T (I“(t),lf‘(t))) a BBF operator,

o fort, <t <ty m®) an identity evolutionary operator,

o s a sequence {sV} of BTS with thresholding operators,

SO T(PN) x TILR) — T (9.7 (1. 14) )

ol 2@ for 0 < ¢ < t, (the filtering parameters ),

P =pP 20 for0<t <t

ol £ (p§t>,p§t)) € R? for 0 < t < t; (the cut-and-splice parameters), and

0 o sequence {0} of threshold mappings 6 : I — N.

Then the algorithm shown in Figure 15 is called o fast messy genetic algorithm.

t:=0;
initialize P(0) := {a1(0),...,a,00 (0)} ~ U(I(A®));
while (:({P(0),...,P(¢t)}) # true) do
recombine: P'(t) := re(rt)(P(t));
mutate: P"(¢) := me("tb)(P'(t));
select: P(t+ 1) := s¢p,0,)(P"(t));
t:=t+1;
od

Figure 15. Outline of a Fast Messy Genetic Algorithm
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The hope is that a balance can be found between the the explorative effect of filtering and exploitative

effect of selection. This balance depends on the specification of the sequences of individual lengths {A®} and
threshold mappings {#(Y)}. Goldberg, et al. suggest the more conservative threshold mappings ) : 1> — N

such that for (a,b) € (A x £)** x (A x £)*, and independent of ¢,

f(a,b) = F\az/\b + 3\/>‘“(£ _Zz’\(al)ibif)f - )

This and other existing fmGA parameter selection techniques are discussed in Section 2.6.5. None reliably

obtains the necessary balance between convergence and disruption in practical applications.

2.6.5 fmGA Parameter Selection Techniques.  The effectiveness of the fast messy genetic algorithm
for a given application depends on a number of design parameters. In particular, experience [28] shows that
the effectiveness of the algorithm is highly sensitive to the sequences of individual lengths { A} and threshold
mappings {6}. No previously proposed techniques for selection of these parameters [28, 35, 46, 47, 54]

reliably yields satisfactory effectiveness in practical applications.

Each of these techniques is based on the premise that in order to be effective, the algorithm must
produce a final primordial phase population which contains “building blocks” in proportions sufficient to
ensure “good mixing” in the juxtapositional phase. In this context (and thus in the remainder of this
section), building blocks are those order-k potential building blocks with juxtapose to form “the” order-
k optimal individual. Where no unique order-k optimal individual exists, “building blocks” are not well

defined.

The earliest techniques [27, 28, 35, 46, 54| are essentially heuristic (Section 2.6.5.1). Kargupta’s more
recent methodology [47] is less heuristic and yields parameters resulting in improved effectiveness in a lim-
ited study. It is based on a more complete model of tournament selection than the earlier techniques
(Section 2.6.5.2). None of the techniques predicts the expected effectiveness of the algorithm, nor whether

improved effectiveness may result from “tweaking” the parameters.
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2.6.5.1 Heuristic Techniques. The technique proposed by Goldberg, et al. in their fmGA
study [35] is based on the heuristic that an adequate final primordial phase population results when each
selection episode produces a sufficient number of copies of each building block to prevent extinction by BBF.
Based on the probability of building block survival, a building-block repetition factor of
AG-1)
o)

Y 1) _
(")

I

Q

L) k ()
( O ) , for v\ >k

_ —k
= p; s

A (i) . . [ . .
where p; = h, is sufficient for at least one copy of an order-k building block to survive a reduction of

string length from A¢~1 to A,

The fmGA study proposes “fixing 7 to a constant value much less than 2%, where £, is the number of
selection repetitions per length reduction.” Doing so “roughly implies a fixed length-reduction ration p = p;
for all 4.” It is not clear how ¢, should be chosen, nor is it clear how to choose p except that v < 2%+ should

be satisfied.

Regarding the use of the thresholding parameters proposed earlier by Goldberg, Deb, and Korb [31],

the fmGA study reports that “this procedure has not proven to be adequate.” Instead, a threshold of

6 = Pljz + 34

is suggested, where A; and A, are the lengths of the competing individuals, £ is the nominal string length,

and o2 is the variance of the hypergeometric distribution [53] having parameters Ay, Az, and £:

2 At = AD)Aa(f = Ag)
7= 20— 1)
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The experiments reported in the fmGA study do not use parameters obtained using the proposed method-

ology. According to Kargupta [46],

The [experimental] results presented in the ICGA paper were based on [an] empirically tuned
schedule, since we did not have the complete theoretical analysis of [the fast messy genetic
algorithm]| at that time.

The cmpirical tuning involves mcasuring the fraction of the individuals in cach gencration containing cach
building block, and adjusting the parameters based on those fractions [46]. Parameters obtained via this
method for a 50-bit order-5 fully deceptive function'® are shown in Table 2. The specific tuning strategy by

which the final parameters are obtained is not known to this author.

Table 2. Empirically tuned fmGA thresholding and filtering parameters for a 50-bit order-5 fully deceptive
objective function

Episode | Cut generation | String length | Threshold
0 0 45 39
1 7 39 35
2 11 34 28
3 15 29 23
4 19 25 18
5 23 22 15
6 29 19 13
7 35 16 10
8 41 14 9
9 47 12 7

10 53 10 6
11 59 8 5
12 65 7 4
13 71 6 3
14 77 5 4

This cmpirical tuning mcthod requires a priori knowledge of which genes constitute building blocks.
Such knowledge is not available for practical applications. Consequently, this parameter selection technique
is not generally applicable. For example, in an application of the fast messy genetic algorithm to energy
minimization [54], it is not known whether or not order-k building blocks exist, much less which genes

constitute those building blocks. Furthermore, the execution time required for this application prohibits

15 Although apparently not the same function addressed in the fmGA study.
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any substantial empirical tuning of the exogenous parameters. The experiments reported in the energy
minimization study use a heuristically “scaled version” of the schedule in Table 2, which is shown in Table 3.

In another application to the same problem [28], the average effectiveness of the algorithm resulting from

Table 3. Scaled fmGA thresholding and filtering parameters for a 240-bit objective function

Episode | Generation | String length | Threshold
0 0 216 194
1 7 185 143
2 11 157 107
3 15 135 84
4 19 115 64
5 23 98 47
6 29 84 38
7 35 72 31
8 41 61 25
9 47 53 21

10 53 45 17
11 59 39 15
12 65 33 12
13 71 29 10
14 77 24 8
15 82 21 7
16 87 18 6
17 92 15 5
18 97 13 4
19 102 11 4
20 107 9 3
21 112 8 3
22 117 7 2
23 122 6 2
24 127 5 3

this schedule is compared to three others:

1. “50% initial similarity, linearly increasing to 100% similarity,” i.e. the threshold mapping in episode e
is such that 6, = (% + %%)/\(e) where ey is the final selection episode;

2. “50% initial similarity, linearly increasing to 80% similarity,” i.e. 0.y = (3 + f—oe‘if))\(e); and

3. “constant 80% similarity,” i.e. 6.y = %/\(e).
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The results obtained for this application, while far from exhaustive, indicate that the last schedule is the

most effective of those compared.

2.6.5.2 Kargupta’s Technique. Kargupta’s more recent methodology [47] is less heuristic in
nature and yields parameters resulting in improved effectiveness in a limited study compared to the method
of Goldberg, et al. [29]. This section formalizes Kargupta’s description of this technique. The stated design
objective of the technique is to ensure that the fraction of individuals containing each of the building blocks
grows nearly uniformly. This growth is achieved and controlled through the choice of three sets of design

variables:

1. the duration tz‘e) of each selection episode e,
2. the threshold parameter 6, for cach selection episode ¢, and
3. the number of genes A¢,) — A(eq1) deleted in each filtering event.
Formal statement of the technique is facilitated by a brief review of the underlying theory.

The theoretical development includes a more “realistic” model of BTS with thresholding than that
used in the research of Goldberg, et al. [35], focusing on “cross-competition” between building blocks. The
model views individuals as containing no more than one of m building blocks. That is, individuals are viewed

as belonging to one of m 4+ 1 classes, where m is the number of building blocks:

e the classes “i”, wherei € {1,...,m}, consisting of the individuals containing building block ¢ (assumed

to be mutually exclusive), and
e the class “junk” of individuals containing no building blocks.

The fraction of individuals in class ¢ in gencration ¢ 4+ 1 is modeled by

Qi+t = Gig | 2—Gigp — 2(2 —aij)gie |
i#i
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and the fraction of individuals in junk is

_ 2
Qjunk,t+1 = qjunk,t

= (qfunk,o) i ’

where a;; is “the expected number of copies of building block 2 resulting from competition with building

block j.” The matrix o having components «;; is called the interaction matriz.

Using this model, Kargupta considers two “extreme” cases. The first is the “unbiased” case, in which

a;; = 1 for all 7, 7, corresponding to equally scaled building blocks, so that the interaction matrix is

1 1 1
1 1 1

a=1% (4)
1 1 1

The sccond is the “strong bias” casc, in which the intcraction matrix is of the form

11227
a = |ol1]0T (5)
0|21

In the strong bias casc, cvery individual which contains a particular building block i is more fit than cvery
individual which lacks building block ¢ (Equation 5 assumes without loss of generality that ; = 1). Also, for
some building block j, every individual which contains a building block & # 7 is more fit than every individual
which contains building block j (Equation 5 assumes, again without loss of generality, that j = 2). Excluding

building blocks ¢+ and 7, the strong bias casc is identical to the unbiased casc.
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The theoretical development motivating Kargupta’s parameter selection technique also includes a model
of BBF, essentially identical to that of Goldberg, et al. [35]. The fraction of individuals in class ¢ following

the BBF event following selection episode e are modeled by

9i0,e+1 = Tet19itre >

and the fraction of individuals in junk is

Qjunk,0,e+1 = Gjunk,t*.e + (1 - 7']e—l—l) 5 Qitre >

2
where

(o)
Aetr)—k
Net+t1 = W
Ae+1)
Based on these models of BTS and building block filtering, Kargupta proposes a methodology by which
to obtain fast messy genetic algorithm exogenous parameters. The stated design principle motivating the

technique is the control of “niche sizes.” In brief, Kargupta seeks to choose the thresholds so that filtered

individuals are 6., 1)-compatible if and only if their parents are (. -compatible, i.e.
Ac(a,b) > by <= Ac(m(a), m(b)) > O(c11)

is satisfied. The technique is apparently designed to satisfy the condition in expectation in some sense. It
may be stated formally as shown in Figurc 16. Kargupta views g4, 7, §, and B as design paramecters, but
offers little guidance as to how they should be selected for a given application. The experiments he reports
are for an order-5 fully deceptive fitness function, with p = 0.5, 6 = 0.01 and 8 = 2, which implies that

v = p~* = 32. Because v < 2¢¢, Kargupta’s experiments are apparently for t, > 5.
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1. Fix7<<2ts 247%,6€(0,1), and 8 > 1.

2. Take Aoy = £ —  and 0y = [0,

3. For each episode e, with a,b ~ U(I(A())):
(a) Take A(eyq) = p/\(e)
(

)

b) Take t} £ max{t € Z*: (Vz Dllase — a4 < 61}

(C) If )‘(e) > Bk, take 6(e+1) = g [A ( ( ) (b)) | Ac(a,b) < 9(6)]
)

(d) If Aoy < BE, take Ooqqy ¢ [Ac(m(a), m(b))].

Figure 16. Kargupta’s fmGA Parameter Selection Technique

The choice of the initial individual length Ay is consistent with the recommendations of Goldberg, et
al. [35]. The individual lengths A(.) resulting from the constant string reduction ratio p are also consistent
with those recommendations. Similarly, the choice of the initial threshold 6y is consistent with the original

messy genetic algorithm thresholding theory [16].

Each ¢t is chosen so that as many iterations of selection as possible are performed while ensuring “even
growth” of the building blocks within episode e. Kargupta does not address the existence or determination
of a 6 € (0,1) such that each t* > 1 for a given application. If such a § does not exist or simply cannot be

readily identified, the technique fails.

The last two steps choose the threshold parameters heuristically so as to control the “niche sizes,”
as discussed previously. Strictly speaking, Kargupta’s description of the technique specifies a choice of the
threshold reduction A¢ey — A(et1), rather than the threshold A1) itself. In the early episodes (for which  is
determined by the conditional expectation), the thresholds are chosen to be relatively small, thus permitting
relatively unrestricted competition. In the late episodes (for which 6 is determined by the unconditional

expectation), the thresholds are more conservative, thus reducing cross competition.

Kargupta offers little justification for the specific expectations recommended, except that they resulted

in improved effectiveness over previous scheduling techniques for the experiments performed. Nor does he
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address the fact that the conditional expectation fails to exist when 8.y < 2X(.y — £, i.e. when all individuals

are 9(6)-c0mpatible.16

2.7 Summary

Evolutionary algorithms are a class of stochastic population-based algorithms which are commonly
applied as optimum seeking techniques. Included within this broad class are the loosely defined classes of
genetic algorithms, evolutionary programming, and evolution strategies. A novel framework for evolutionary
algorithms is proposed, in which evolutionary operators are viewed as mappings from parameter spaces to
random population transformations. Definitions of recombination, mutation, and selection operators which

capture their distinguishing characteristics are proposed within this framework.

A specific example of evolutionary algorithms is the simple genetic algorithm (sGA). Another class
of evolutionary algorithms, which historically arose from genetic algorithms research is the class of linkage-
friendly genetic algorithms (IfGAs). The primary distinctions of 1fGAs, as defined in this research, are
their use of order-invariant representation schemes and strictly invariant selection operators (see Figure 17).
Specific examples of 1fGAs include the messy genetic algorithm (mGA), the fast messy genetic algorithm
(fmGA), and the gene expression messy genetic algorithm (gemGA). The effectiveness of the fmGA is
sensitive to the sequences of individual lengths and threshold mappings. Existing fmGA parameter selection

techniques do not reliably yield satisfactory effectiveness for practical applications.

16Kargupta’s actual recommendation for early episode thresholds is 8et1) = & [Ac(m(a),m(b)) | 8oy — (Aey — b)) <
Ac(a,b) < 0(5)] but this seems particularly arbitrary and is inconsistent with other parts of the discussion. Furthermore, this
fails to exist if 6.y > A(.). This condition occurs, for example, in the initial selection episode when Ay > k so that 6y = A(g)-
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strictly invariant selection GA

GA

Figure 17. Venn Diagram of the Class of Genetic Algorithms
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III. Generalized Fast Messy Genetic Algorithms

This chapter proposes a novel linkage-friendly genetic algorithm. The algorithm shares the high-level
structure of the fast messy genetic algorithm, shown in Figure 14, as well as the representation scheme
of the messy genetic algorithm (mGA) and fast messy genetic algorithm (fmGA), defined in Section 2.6.1.
Consequently, it is convenient to refer to the algorithm as the generalized fast messy genetic algorithm

(gfmGA).

In the gfmGA initialization phase, a competitive template is selected and an initial population is
randomly generated. The gfmGA primordial phase uses the probabilistic building block filtering operator
(Section 3.1) and binary tournament selection with probabilistic thresholding operator (Section 3.2). Both of
these operators are novel generalizations of the operators used by the fmGA. The juxtapositional phase uses
the cut-and-splice operator (Section 2.6.2.1), as well as the binary tournament selection with probabilistic
thresholding operator. Section 3.3 defines the gfmGA in the formal framework of Section 2.3 and shows that

the fmGA is a special case of the gfmGA.

Mathematical models of the two gfmGA primordial phase operators are developed in Chapters IV
and V. Together, the models permit the definition of expected gfmGA effectiveness as a continuously
differentiable function of the gfmGA parameters (Chapter VI). Optimization of the related cost function J

by various techniques yields parameter selection methodologies for the fmGA and the gfmGA.

Because the fmGA is a special case of the gfmGA, existence is guaranteed of parameters for which the

gfmGA expected effectiveness is no worse than the best possible fmGA expected effectiveness.

Furthermore, partly because the gfmGA parameters are real-valued, vector space optimization tech-

niques may be used to obtain formal necessary optimality conditions (NOCs) for the gfmGA parameters.

3.1 Mutation

The generalized fast messy genetic algorithm uses the probabilistic building block filtering (probabilistic

BBF) operator, which this research views as a mutation operator. The probabilistic BBF operator is a novel
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generalization of the deterministic BBF operator (Section 2.6.2.2). Whereas the deterministic building block
filtering operator deletes the same fixed number A® — X#*1 of genes from each individual in generation
t, the probabilistic BBF operator adds or deletes a random number of genes, determined independently for

each individual.

If AHD < A®) | the genes to be deleted are drawn without replacement from a uniform distribution
over all of the individual’s genes. Equivalently, the genes to be retained are chosen uniformly without
replacement. If \(**1) > X)) the genes to be added are generated by drawing without replacement from the
sct of loci for which the individual does not alrcady contain a gene, then drawing from the genic alphabet
independently for each new gene. Thus, the operator preserves the non-overspecified property of primordial
phase individuals. It is convenient to define the probabilistic BBF operator in terms of the generalized local

BBF operator.

Definition 3.1.1 (Generalized local building block filtering operator): Let I be an IfGA individual

space over genic alphabet A with nominal string length £,

swé {&ET({O,...,E},UWz) 1 6(¢) €7Ti} )

Q2 Sr x Sp x At w = (61,02, (a1,...,az)) ~ U(Q), sort({f1,...,8:}) = (Brys -+ sPny) such that By, <

"'</6nA;

m[((a'lvll)v R (a/\ovl/\o))v (alv s 7af)v (/8/\04-17 e 7/8Z)7017027/\f]

((@oy(1)sloy(1))s - s (Bay(ap)s Loy (r ) Sif Ay < o

>

( (@oy (1) lor(1))s -+ s (@ay(Af)s lor(ag) ) )

(a02(1)+)\0aﬂo’2(1)+)\0)5 M) (a(fz(/\f—)\o)?ﬂo'z()\f—/\o)) > b Zf Af > A0
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and m' € EVOP(I,1,N,Q) an evolutionary operator. If for every Ay € {0,...,£} (the offspring individual

length ), and every a = ((a1,01),...,(ar,Ix,)) € I, m' satisfies
m')\f(a) =ﬁz(a, (0417...,042) 507‘t({ f} {ll, l)\o}),a'l()\o),&z(z—)\0),)\]0) y

then m' is called o generalized local building block filtering operator. O

The number of genes added or deleted from a parent individual in generation ¢ € {0,...,t,— 1} is determined

by the offspring individual length A*+1), which is a random variable chosen according to
OISV (t+1) _
P (A) = Pr[A = A

where each Q/J(t)()\) is an exogenous filtering parameter. Because each 1" is a probability density function

of the discrete type,

1/,(1) Z 1/,(1)

and the % ())’s are subject to the constraints

(YA e {1,... LH[wP ) > 0]

and

S0 <1 (6)

Definition 3.1.2 (Probabilistic building block filtering operator): Let I be an [fGA individual

space over genic alphabet A with nominal string length £, n = p' € Z* (the population size),

s,ré{aef< z}Um>: Em} :
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Q2 (Sr X Sz x AY* | w = (Wiy--swu) ~ U(Q), m' a generalized local BBF operator, and m : [0,1]* —

T(Q,T(I”I,(I()\f))”’)) an evolutionary operator. If for every = (P(1),...,¢(f)) satisfying Equations 6

(the filtering parameters), every P € I* (the parent population), and every i € {1,...,u'}, m satisfies
P(Af) Jif1 < Ap <4

Pr{[m¢(P)]i - [m;f<wi>]<Pi>} - ,
1-S0_ (A L ifAr=0

then m is called a probabilistic building block filtering operator. O

3.2 Selection

The gfmGA primordial phase uses the binary tournament selection (BTS) with probabilistic thresh-
olding operator. As in the deterministic case (Section 2.6.2.3) competition is restricted to those which are
determined to be compatible. In contrast to the deterministic case, individuals are considered compatible
with a probability which depends on their similarity. The formal definition of probabilistic compatibility is

more general in that it does not require the threshold mapping to depend on an individual similarity.

Definition 3.2.1 (Probabilistically #-compatible): Let I be a non-empty set (the individual space)
and 0 : I> — [0,1] (the probabilistic threshold mapping). Then a € I and b € I are called probabilistically
6-compatible with probability 8(a,b). If X ~ U([0,1]) is sampled and X < 6(a,b) then a and b are found

to be probabilistically 8-compatible. O

For the gfmGA, individuals a € I();) and b € I()A;) and sharing A\, = A.(a,b) common defining loci
are probabilistically #-compatible with probability (Y (A¢; Ag, Ay ), where each 8 (A,; Mg, Ap) is an exogenous

thresholding parameter.
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The thresholding parameters are probabilities for each ¢ € {0,...,¢; — 1}, and hence subject to the

constraints

YA X 2 0D (A0, 0) >0

YA A A 0 8P (N A0 <1 (7)

Definition 3.2.2 (Binary tournament selection with probabilistic thresholding operator and
finite shuffle size ng):  Let I be a non-empty set (the individual space), £ € Z™, u € Z™ (the parent
population size ), ' € Z* (the offspring population size ), ngp, € Z™ (the shuffle size ), £ ({1,... ,u}"sh)“' X
[0, 1]7%en xu'

AN
w =

((wo(1),- s (1)s- ooy (wolp')s - ooy wn,, (1), X) ~ U(R)

and s € EVOP(L,pu, T (I2,[0,1]) x T(I,R), Q). Also, define j : {1,...,u'} x T(I%,[0,1]) — {0,...,nsn} by

A 0, if (VE)[Xix > 0(Puyiys Pors))

min{k : Xox < 0(Puyi), Pup(iy)}  » otherwise

If for every @ : I* — [0,1] (the threshold mapping), every fitness function ® : I — R, and every population

P € I*, s satisfies

P if ®(Poyi) 2 ®(P. (o)
[s¢0.8)(P)l: = @ (@) i(i.0)(0) ’

P,

o) otherwise

then s is called a binary tournament selection with thresholding operator. If for every a € I()A,) and every
b € I(Xy), 0 also satisfies Aq Z Ay = 0(a,b) = 64, where § is the Kronecker delta function, then s is

called length preserving. O
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As in the deterministic case, the BTS with probabilistic thresholding operator is an order-based se-
lection operator. Thus, it is strictly invariant (Theorem 2.5.5). Consequently, the effectiveness of any
evolutionary algorithm using BTS with probabilistic thresholding, including the gfinGA, is unaffected by

the choice of (order-preserving) fitness scaling function.

3.8 Algorithmic Specification

The preceding sections describe the novel operators used by the gfmGA. This section specifies the

ghuGA in the formal framework of Section 2.3, and shows that the finGA is a special case of the gfinGA.

Definition 3.3.1 (Generalized fast messy genetic algorithm): Let

o I be an IfGA individual space over the genic alphabet {0,1} with nominal siring length £ and overflow

factor o,

e I(A) defined by Equation 2,

ke {1,...,£} (the building block size),

ty € Z* (the final generation),

tp € {0,...,t¢} (the final primordial phasc gencration),

e X0 2y (the initial individual length ),

P a sequence {'g/)(t)};”:() C [0,1])* satisfying Equations 6 (the filtering parameters ),

a € [0,1] (the probability of selection error),

e 2y € R such that Z ~ N(0,1) = Pr[Z > z4] = 1 — a,

B% € Rt (the mazimum inverse signal-to-noise ratio per subfunction to be detected),

o =y 2 eé(f__kz)fz)!inﬁz([%] — 1)2* (the population size),

celp = I(?) (the competitive template),

o &.: 1 — R is an IfGA fitness function,
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o i: U2, (I*)! — {true false} (the termination criterion) such that

J{P(0),...,P(t)}) = true <= card ({P(0),..., P(£)}) > t5 ,

® T a SEQUENCE {r(t)} of Goldberg’s cut-and-splice operators ¥ : R? — T (Qg),'f <I”(t),I“(t)>),
o m a sequence {m D} of evolutionary operators,

o for0<t<ty,, m®:[0,1]* —7T (Q%),T (I“(t),lf‘(t))) a probabilistic BBF operator,

o fort, <t <ty m®) an identity evolutionary operator,

o s a sequence {sV} of BTS with probabilistic thresholding operators

SO (17, [0,1) x T(LR) — T (20,7 (17, 147))

ol 2@ for 0 < ¢ < t, (the filtering parameters ),

P =pP 20 for0<t <t

ol £ (p§t>,p§t)) € R? for 0 < t < t; (the cut-and-splice parameters), and

0 o sequence {0} of threshold mappings 6 : I* — [0,1].

Then the algorithm shown in Figure 18 is called a fast messy genetic algorithm.

t:=0;
initialize P(0) := {a1(0),...,a,00 (0)} ~ U(I(A®));
while (:({P(0),...,P(¢t)}) # true) do
recombine: P'(t) := re(rt)(P(t));
mutate: P"(¢) := me("tb)(P'(t));
select: P(t+ 1) := s¢p,0,)(P"(t));
t:=t+1;
od

Figure 18. Outline of a Generalized Fast Messy Genetic Algorithm
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Building on the recommendation of Goldberg, et al. regarding the mGA [36], the algorithm may be
applied iteratively for 2 < k < k,q2- The objective of iteration & is to identify an order-k optimal individual,
given an order-(k — 1) optimal competitive template ¢. The optimality condition on ¢ for the second iteration

(k = 2) is order-1, which may be satisfied efficiently by hill-climbing in I(¢).

The gfmGA uses an order-invariant representation and a strictly invariant selection operator. Thus,
it is a linkage-friendly genetic algorithm. The remainder of this section shows formally that the fmGA is a
special case of the gfmGA | in the sense that every instantiation of the fmGA is equivalent to an instantiation
of the gfmGA, but the converse does not hold. The first lemma considers the relationship between the

deterministic and probabilistic BBF operators.

Lemma 3.3.2 The building block filtering operator is a special case of the probabilistic building block filtering

operator.

Proof: Let I be an IfGA individual space, p € Z, P € I*, m the BBF operator, and Ay € {0,...,¢}.
Then the probability that [mx,(P)]; is of length A is 1 if A = Ay and 0 otherwise. This is equivalent to the
probabilistic BBF operator with filtering parameters 1)(A) = 6x,x,, where 6 is the Kronecker delta function.
Now let ¢ be any filtering parameters which are not of this form, and m the probabilistic BBF operator.

Then with nonzero probability [my(P)]; is of length different than Ay. |

The next lemma considers the relationship between the deterministic and probabilistic BTS with thresholding

operators.

Lemma 3.3.3 The binary tournament selection with thresholding operator is a special case of the binary

tournament selection with probabilistic thresholding operator.

Proof: Let I be a non-empty set, u € Z+, P € I*, s the BTS with thresholding operator, d : I* — N, and

6 : I? — N. Then the probability that a and b are #-compatible is 1 if d(a,b) > 8(a,b) and 0 otherwise.
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This is equivalent to the BTS with probabilistic thresholding operator with threshold mapping

) — 1 ,if d(a,b) > 6(a,b)

0 ifd(a,b) <8(a,b)
Now let T be any threshold mapping which is not of this form, and s the BTS with probabilistic thresholding

operator. Then there exist individuals a and b with probability of T-compatibility p ¢ {0,1}. |

The preceding lemmas imply that the fmGA is a special case of the gfmGA.

Theorem 3.3.4 The fmGA is a special case of the set of the length-preserving gfmGA.

Proof: The result follows immediately from Lemmas 3.3.2 and 3.3.3, the definitions of the fmGA and the
gfmGA, and the observation that all individuals in an fmGA primordial phase population are of the same

length. |

This result implies the existence of probabilistic filtering and thresholding parameters for which the gfmGA

expected effectiveness is no worse than the best possible fmGA expected effectiveness.

3.4  Summary

The generalized fast messy genetic algorithm (gfmGA) is a novel linkage-friendly genetic algorithm
(IfGA). It shares the representation scheme of the messy genetic algorithm (mGA) and the fast messy
genetic algorithm (fmGA), both of which are also 1fGAs. The gfmGA also shares the high-level structure
of the fmGA. The gemGA is another IfGA mentioned in Chapter II (see Figure 19). The gfmGA differs
from the fmGA in its use of novel probabilistic generalizations of the building block filtering and binary
tournament selection with thresholding operators. Because the fmGA is a special case of the gfinGA,
existence is guaranteed of parameters for which the gfmGA expected effectiveness is no worse than the best

possible fmGA expected effectiveness.
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length preserving gfmGA

IfGA

Figure 19. Veun Diagram of the Class of Linkage-Friendly Genetic Algorithins
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IV. Probabilistic Building Block Filtering

The deterministic building block filtering (BBF) operators used by fast messy genetic algorithms delete
the same fixed number of genes from each individual in a particular generation (Section 2.6.4). In contrast,
the probabilistic BBF operators used by generalized fast messy genetic algorithms delete (or add) a random
number of genes, the number being determined independently for each individual (Section 3.1). This chapter
develops a dynamical systems model of probabilistic BBF which treats individuals as belonging to one of
2(£ + 1) classes, where £ is the nominal string length. It is applicable in general to evolutionary algorithms
with linkage-friendly genetic algorithm (IfGA) individual spaces over finite genic alphabets and to generalized

fast messy genetic algorithms (Chapter III) in particular.

Deterministic BBF operators are modeled by Goldberg, et al. [35]. The model developed therein views
individuals as belonging to one of two classes: those containing a particular building block, and those lacking
it. The analysis is restricted to filtering operators which are purely destructive, as well as non-probabilistic in
the sense that all individuals in a particular generation arc of the same length. Kargupta cxtends the analysis
of destructive non-probabilistic filtering operators to simultaneously consider multiple building blocks [47].

His analysis assumes that no individual contains more than one building block.

Together with the binary tournament selection model developed in Chapter V, the probabilistic BBF
model permits the prediction of expected effectiveness. The prediction of expected effectiveness serves as

the foundation for the exogenous parameter selection techniques proposed in Chapter VI.

After introducing the overall form of the mathematical model and certain notation (Section 4.1),
the probabilities of building block survival (Section 4.2) and building block construction (Section 4.3) are

developed. The total probability of building block presence after filtering is developed in Section 4.4.
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4.1 Preliminaries

4.1.1 Notation. It is convenient to present certain definitions. Separable fitness functions are

formally defined in terms of projection mappings.*

Definition 4.1.1 (Projection mapping): Let I be an IfGA individual space with genic alphabet A and

nominal string length £, and L = {1,...8}. If Pegy.ny + AY — AF such that

ne-

’P{Ll,...,Lk}(afla ey 0y) (az,,...,az,)

then P, ... .1,} S a projeciion mapping. O

When the set of loci £ possesses a partition {£1,..., L}, the projection mappings P, may be thought
of as “separating” the allele vector space A¢ into independent smaller dimensional spaces Acard(a,-). When
a fitness function ® can be written as the sum of subfunctions operating on these independent spaces, ® is

separable.

Definition 4.1.2 (Order-k separable IfGA fitness function): Let I be an [fGA individual space over
genic alphabet A with nominal string length £, and Pc(-) S7o foDoT(,c):I — R an [fGA fitness

function. Suppose that for some fized k < £ there exist

o a partition {Ly,..., Ly} of £ = {1,..., ¢} with each k; = card (L;) < k; and
o functions D; : A¥ — R™, f;:R% — R, and T; :R — R

such that

!The mappings defined are not “projection” operators in the sense of linear operator theory [61]. In particular, their domains
and codomains are not in general the same space.
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where the P, ’s are projection mappings. Then @, is called an order-k separable fGA fitness function. Fach

&; = TiofioD;oPr, ol s called a subfunction. O

The notations I(A) and I for important subsets of the individual space I are introduced in Sec-
tion 2.6.1. It is convenient to introduce special notation for other frequently mentioned subsets of I, which

simplifies the analysis presented in the sequel.

e For each A € {0,...,£} and each § € {1,...,m}, assume there exists a unique order-k optimal building
block {(a1,l1),...,(aks,lk,)}, where Lg = {l1,...,lx,} is the set of defining loci for subfunction 3,
and define

Is(\) = {(a,)) € I(\) : (VL € Lg)(3j € £)[(a5, 1) = (af, D]}

Then I5(A) is the set of length A individuals which contain building block 3.

e For cach A € {0,...,£} and each 8 € {1,...,m}, define
A
Ig(A) = I(A) — I5(}) .

Then I_5()) is the set of length A individuals which lack building block (3.

Also, the set of primordial phase individuals containing building block 3 as

4
A
Is = JIs() .
A=0

Finally, the presentation is notationally simplified through the use of the hypergeometric probability density

function. If X is a random variable with a hypergeometric distribution [53], then

Pi[X = z] = h(z;n, M, N) e (m— .
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4.1.2  Dynamical Systems Model. Liepins and Vose [49], propose a dynamical systems view of a
population vector p as a probability density function over the individual spacc, with the ¢th componcent being
the probability with which the ¢th individual is sampled. This research views the population vector more
generally as a density function over a set of equivalence classes which form a partition of the individual

space. Specifically, the population vector is of the form

AN
P = (pOapla"'apZ |q07QIa"'aqu)T

Each component p; is the probability that an individual sampled from the population belongs to the equiva-
lence class I(4) consisting of those individuals which contain building block 8 and have length .2 Similarly,
each component ¢; is the probability that an individual sampled from the population belongs to the equiva-

lence class I5(4) consisting of thosc individuals which lack building block 8 and have length 3.

Probabilistic BBF is modcled as a deterministic transition function 7, mapping the current population
vector p to the expected next population vector 7,,(p). Because the next population vector in an infinite
population algorithm exactly matches the expected population vector, the model developed here is exact for
such algorithms. Furthermore, the transition function 7, is independent of population size (see Vose and

Wright [74]). Hence, the model is also an exact expected value model for finite population size algorithms.

4.2  Building Block Survival

This section develops a mathematical model of building block survival under the probabilistic BBF
operator. The probability of building block survivel is the conditional probability that an individual contains
the building block after filtering given that it does before filtering. This probability depends on the length

of the individual before and after filtering, as stated in the following theorem:

2Strictly speaking, building blocks are defined only in the case of separable fitness functions. For this reason, the theorems
in this chapter are proved in the context of such fitness functions. The results apply also to fitness functions which are not
separable, with the understanding that the “building block” is simply the globally optimal individual.
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Theorem 4.2.1 (Building block survival) Let I be an IfGA individual space with nominal string length
£, ® = Yibi I xIp — R a separable fitness function, Lg the set of defining loci of ¢g, k 2 card (La),

and m' a local probabilistic BBF operator. If X € I(X) and m'(X) € I(X) then the probability of building

block survival is

B h(ks Ak, A) , f0<A<A
psurv(k7/\7/\7£) é ) (9)
1 CAfA<AL Y

where h is defined by Equation 8.

Proof: Consider first the case A < A < £. No genes are deleted by m/, so the building block survives with
probability 1. Now consider the case 0 < XA < k. Then m'(X) does not contain enough genes to contain
building block 3, so the building block survives with probability 0 = h(k; Ak, A). Finally, consider the case
k< A < A. Then there are (i) ways to choose the A genes to keep from the original A. Also, there are
(2) @::) ways to choose all k genes of the building block and X — k more genes from the remaining A — k
so that the building block survives. Thus, for the casc & < A< A, the probability that filtering docs not

disrupt an existing building block is

Prfm/(X) € I5 | X € Is(A) Am/(X) € I())] = 2~ =

—
Deide
—r

which completes the proof. [ |

Theorem 4.2.1 is essentially a re-statement of the probability of survival claimed by Goldberg et al. [35] and
later by Kargupta (see Section 2.6.5.2) for a deterministic BBF operator, generalized to apply to probabilistic
BBF operators. The following theorem gives the total probability that an individual contains a particular

building block both before and after filtering, and that it is of particular lengths before and after filtering:

Theorem 4.2.2 (Building block presence before and after filtering)

Let I be an [fGA indwidual space with nominal string length £, ® = Y. ¢ I xIp — R a separable fitness

function, Lg the set of defining loci of ¢g, k 2 card (Lp), and m' a local probabilistic BBF operator. If X is
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drawn randomly from population P(t), then

Prm/(X) € Is(A) AX € I5(A)] = Pauro (ks A A L) - (A1) - Pr[X € I5(N)] (10)

where ¥ is the filtering schedule, and the psum(k,;\,/\,f) ’s are defined by Equation 9.

Proof: The event m/(X) € Ig()) is equivalent to the event m/(X) € Ig Am/(X) € I()), so the probability

on the left hand side of Equation 10 may be written as

Prfm/(X) € Is(M AX € Is(\)] = Prfm/(X) € Is Am/(X) € M) AX € I(\)] .

By the definition of probabilistic BBF operator, the event m/(X) € I(;\) is independent of the event X €

Ig(A), ie.

Prim/(X) € IN) AX € Ig(A)] = Pr[m/(X) € I(A)]- Pr[X € I5(N)]

= ¢(\t)-Pr[X e Ig(N)] .

Supposc Prjm/(X) € I(A\) AX € Ig(A)] = 0. Then

Prm/(X) e Is(A)AX e Is(N)] = 0
= Dourv(k, A A, 0) -0

= Pouro(k, AN 0) - (A1) - Pr[X € I5(V)] -
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On the other hand, if Prfm/(X) € I(A) AX € Ig(A)] # 0 then

Prfm/(X) € Is(A) A X € I5(N)]

= Prfm/(X) € Iy | m'(X) € I(A) AX € Ig(A)] - Prfm!(X) € I(A) A X € Ig(M)]

Pr[m/(X) € Ig | m'(X) € M AX € Ig(N)]- (A1) - Pr[X € Ig(A)] -

Because Pr[m/(X) € Iz | m'(X) € I(A\) AX € Ig()\)] is the probability of building block survival, the result

follows immediately from Theorem 4.2.1. |

4.3 Building Block Construction

The deterministic BBF operators of fast messy genetic algorithms are such that all individuals in
genceration t + 1 have lengths no greater than thosc in gencration ¢. Probabilistic BBF opcrators do not
nccessarily exhibit this property. Thus, it is possible for a probabilistic BBF opcrator to construct building
blocks as well as disrupt them. This section develops a mathematical model of building block construction

in generalized fast messy genetic algorithms.

The probability of building block construction is the conditional probability that an individual contains
a particular building block 3 after filtcring given that it lacks the building block before filtering. This
probability is nonzcro only when the unfiltered individual contains no incorrect genes. When this condition
holds, the probability depends on the length of the individual both before and after filtering, as well as
the number of missing genes. The number of missing genes in an individual X, i.e. the number of loci of
subfunction 8 with respect to which X is unspecified, is denoted K(X). That is, K(X) = k if and only
if X is specified (correctly or otherwise) with respect to exactly k& — k of the loci of subfunction [, where
k2 card (Lp) and Lg is the set of defining loci for subfunction 3. The relationship between the probability
of building block construction, the length of the individual before and after filtering, and the number of

missing genes is given by the following theorem:
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Theorem 4.3.1 (Building block construction) Let I be an IfGA individual space over finite genic al-
phabet A with nominal string length £, ® = Y. ¢i: I xIp — R a separable fitness function, Lg the set of
defining loci of ¢g, k £ card (Lg), and m' a local probabilistic BBF operator. If the alleles of pre-existing
genes are correct with probability [card (A)] ™, then the conditional probability of building block construction

given that k genes are mMissing 18

Prfm/(X) € Is | m'(X) e IM) AX € I.s(\) A K(X) = k]
0 GFO<SA<A+k

[card (A)] *h(ks A — Mk L—X) Lif A+k<A<{

Proof: Suppose first 0 < XA < A+ k. Then the filtering operator does not add enough genes to complete
building block 3, so the building block is constructed with probability 0. Now suppose that A + k<A<
Then there are (ﬁ:i‘\) ways to choose A — A loci to specify from the £ — X available. Also, there are (2) (f\::\\:];c)
ways to choose the & missing loci of subfunction 83, as well as (A—\)—k more loci from the remaining (£—X)—%.
The alleles of the k new genes are correct with (independent) probability [card (A)] 7. By hypothesis, the
alleles of the k — k pre-existing genes are also correct with (independent) probability [card (A)] . Thus, the

probability of building block construction is

Prim/(X) e Is | X € Is(M) Am/ (X) e IMAK(X)=k] = |card (A)]—“””’“—’”“)("“i

= [card (A)] ER(k; X = N\ k£ = X)

which completes the proof. [ |

Theorem 4.3.1 is the building block construction analogue of Theorem 4.2.1. The following lemma is useful

in the proof of the analogue of Theorem 4.2.2.
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Lemma 4.3.2 Let I be an IfGA individual space over genic alphabet A with nominal string length £ such
that 1 < card (A) < oo, & = Yi¢i: I xIp — R a separable fitness function, Lg the set of defining loci of

¢g, and k £ card (Lg). If X is randomly drawn from population P(t) such that
xelN) <= PrX=x]=9\t-1)-[NXN)] ', (11)
where 9 is the filtering schedule and N(X) is defined in Section 5.3.1, then for each k € {1,... k}

PrX € Ls(W)AK(X) = k] =

[1— [card (A)] Fh(k; Ak, 0] " - {1/1()\; t—1)—Pr[X € Iﬁ()\)]} ch(k — ks Ak, £)

Proof: Because Ig(A) and I 4(A) form a partition of I(A),

Pr{X € I5()\)] Pr[X € I(\)] - Pr[X € Is())]

(At —1) = Pr[X € Ig(A)] .

Suppose that Pr[X € I g(A)] = 0. Then

Pr[X € I g(M\) A K(X) = k]

= 0

[1 — [card (A)] *h(k; Ak, £)] 720 hik — k; A, k, £)

= [1 - [card (A)] *h(k; Nk, )] T - {¢()\;t —1)-Pr[X € Iﬁ(A)]} Ch(k =k Ak, £)
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On the other hand, if Pr[X € I_g(A)] # 0 then

PrX e LsMAK(X)=k = PrX el g\)]-PrlK(X)=k|X e ILs(N)]

Wit —1) - Pr[X € Ts(W)]} - PrR(X) = | X € T 5(N)]

By the definition of a conditional probability,

PrK(X) = kAX € I5(N)]
PrX € I_())]

I

PrK(X)=k | X € I5())]

For X sampled according to Equation 11 and k> 0,

card ({X €l g(A): f((X) = ’;}>
N-p(A)

[card (A)]* (kfk) (,\—e(;]iic))
[card (A)]* (f) — [card (A)]*—* (f\:’fc)
l (5) = leard (A)]~*(57) ] -

(kﬁk) (/\—z(;’ifc))

) (Z:k) -1

{[h(k— Ty Ak, £)) ll — [card (A)] *(Z)’“ ]}

1

h(k = k; A, k, £) [1 = [card (A)] " Fh(k; A K, 0)]

Pr[K(X)=k | X el gN)] =

which completes the proof. |

The final theorem of this section gives the total probability that an individual lacks a particular building
block before filtering, contains the building block after filtering, and is of particular lengths before and after

filtering.

Theorem 4.3.3 (Building block presence only after filtering) Let I be an IfGA individual space over
genic alphabet A with nominel string length £ such that 1 < card (A) < oo, ® = Yt IxIp —Ra

separable fitness function, Lg the set of defining loci of ¢g, and k 2 card (Lg). If X is randomly drawn from
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population P(t) according to Equation 11 then

Prim/(X) € Is(A)AX € Ig(A)] = #(\¢t)- {’I/I()\;t -1)-Pr[X € Iﬂ()\)} “Deons(ky, A, A0,

where

Peons(ks A, A, £) £

0 LifO<SA<A+E

leard (A)] ™% = h(k; M by )] 8 Bk — B A B, €) - h(ky A = M E L= X)L if A+ k<A<

Proof: By the definition of a local BBF operator, the event m'(X) € I(}) is independent of the event

X € Ls(M)AK(X) =F, ie.

Pr{m/(X) € IMN AX € I_g(A) A K(X) = k]

Pr[m/(X) € I(A)] - Pr[X € I_g(A\) A K(X) = k]

[1 — [card (A)]"*h(k; A, k, )] 2p(A, 8) - {1/1()\; t—1)—Pr[X ¢ Iﬁ(A)]} ch(k— kA kL)

where we have used Lemma 4.3.2. By Theorem 4.3.1,

Prim’(X) € Is(M) A X € I_s(\) A K(X) = k]

Pr[m/(X) € Is Am'(X) € IMN) AX € Is(A) A K(X) = k]

= Prm/(X) eI | m(X) e [MAX € Is(A\) A K(X) = ]

-Pr[m/(X) € IA) AX € Is(\) A K(X) = k]
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0, FO<A<A+k

(A, t) - {1/;()\;t -1)-Pr[X e Iﬁ(,\)]} Ch(k = kA k0, fA+E<AL< Y

0, FO<A<A+k

[leard (A)]~* — h(k; Ak, £)] 1 - p(3,8) {w; t-1)-PrX e Iﬁw]}

(ks A= Ak £ — A) - h(k — kA K, £), FA+E<A<YL

Finally, by the Law of Total Probability and the observation that

Pr[m/(X) € IsMAX € Is(MAK(X)=0] = 0,
it follows that
~ k ~ ~ ~
Prm/(X) € Isg(M)AX € L g(N)] = ZPr[m’(X) ElMAX el g(MAKX)=k ,
k=1
which completes the proof. [ |

4.4 Total Probability of Building Block Presence

For a probabilistic BBF operator, individuals which are not of the same length before filtering may be
after filtering. The following theorem gives the total probability that after filtering an individual is of length
X and contains building block 3.

Theorem 4.4.1 (Total probability of building block presence)

Let I be an lfGA individual space over genic alphabet A with nominal string length { such that 1 < card (A4) <

o0, ® = > ¢i: IxIp — R a separable fitness function, Lg the set of defining loci of ¢, and k 2 card (Lg).
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If X is randomly drawn from population P(t) according to Equation 11 then

Pr[m(X) € I5(3)]

£
= PAt)- > (Pr[X € Ig(N)] - Psuro(k, A, ) + {¢(A; t—1)—Pr[X € Iﬁ(,\)} -pcons(k,)\,)\)>
A=0
Proof: The I(A)’s form a partition of I. Furthermore, I5(A) and I_5()) form a partition of I(A). Thus,
by the Law of Total Probability, the probability that an individual contains building block 8 aftcr filtering

is

Prm(X) € Ig(:\)]

= Pr[m(X) € Iﬁ()\) AX € I]

£
= Y { Pr[m(X) € Ig(A) AX € Ig(N)] + Pr[m(X) € Is(A) AX € Lﬁ(A)]}

A=0

2
= Y (¢(I\,t) Pr[X € Ig(N)] - Psuro(ky A, A) +9(Xs ) - {z[;()\;t -1)-Pr[X € Iﬂ(A)}  Peons (K, A, A))

where we have used Theorems 4.2.2 and 4.3.3. [ |

4.5  Summary

The building block filtering (BBF) operators used in fast messy genetic algorithms delete the same
fixed number of genes from each individual in a particular generation. The probabilistic BBF operators used
in generalized messy genetic algorithms either add or delete a random number of genes, determined indepen-
dently for each individual. Previous models are limited to deterministic BBF operators, and consequently
consider only the probability of building block survival. The mathematical model developed here extends
cxisting analysis of building block survival to the probabilistic casc, and incorporatcs analysis of building
block construction to arrive at the total probability of building block presence following filtering. Together

with the binary tournament selection model developed in Chapter V, this model permits the prediction of
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the expected effectiveness given a particular choice of exogenous parameters. The prediction of expected

effectiveness forms the basis for the parameter selection techniques proposed in Chapter VI.
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V. Binary Tournament Selection with Probabilistic Thresholding

Previously proposed models of tournament selection (see Section 2.6.2.3) focus on either takeover time
(e.g. Goldberg and Deb [33]) or on selection intensity (e.g. Bick [5] and Blickle and Thiele [11]). Those
models in the latter category treat all individuals as belonging to a single class, so that their fitnesses are
independent and identically distributed. Neither class of models provides information regarding the relative
growth of one (multiple individual) class of individuals with respect to another. Furthermore, no previous

model of tournament selection considers thresholding.

This chapter develops a model of binary tournament selection (BTS) with probabilistic thresholding
which treats individuals as belonging to one of two classes with possibly differing fitness distributions. The
model is applicable to evolutionary algorithms using binary tournament selection with thresholding where
the more fit individual is selected with probability 1. The models of binary tournament selection and
probabilistic building block filtering (developed in Chapter IV) allow the prediction of expected effectiveness
resulting from a choice of filtering and thresholding paramcters. The prediction of cxpected cffectivencss

serves as the foundation for the exogenous parameter selection techniques proposed in Chapter VI.

One key component of the proposed tournament selection model is the probability of “correct decision
making,” defined and analyzed in Section 5.1. A dynamical systems model of BTS with probabilistic thresh-
olding is developed in Section 5.2 using Markov chain analysis. The distribution after selection depends on
the initial distribution, which is examined in Section 5.3 for the case of a uniformly distributed population
in a linkage-friendly genetic algorithm. Finally, Section 5.4 discusses the application of the model to the

prediction of building block processing in a fast messy genetic algorithm.

5.1 Decision Making

Each (nontrivial) tournament performed in the application of a binary tournament selection operator

may be viewed as a decision between two classes of individuals A, B C I where one competing individual
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belongs to A and the other to B.! This section develops a probabilistic model of “correct” decision making

as a function of
e the fitness distributions F' and G of those initial population individuals belonging to A and B, respec-
tively;
e the number of ancestors which belong to A and B for each of the competing individuals;

e the individual similarity D = d(a,b) between the competing individuals a € A and b € B (typically

the number of common defining loci); and

the conditional fitness distributions Fg and Gq of those individuals belonging to A and B, respectively,
given that the pair belongs to the set (D) of such individual pairs also having individual similarity

D.

Section 5.1.1 defines order statistics, upon which the model developed in this section is based. The section
also extends the standard theory to obtain the distribution of the maximal order statistic of a set of random
variables only some of which are identically distributed. This result is applied to derive the probabilities of

correct decision making in the absence (Section 5.1.2), and in the presence (Section 5.1.3) of thresholding.

§5.1.1 Order Statistics.  Arnold, et al. define order statistics as follows:

Definition 5.1.1 (Order statistic (Arnold, et al. [4])): Suppose that (Xi,...,X,) are n jointly
distributed random wvaeriables. The corresponding order statistics are the X;’s arranged in nondecreasing
order. The smallest of the X;’s is denoted by X1.,, the second smallest is denoted by Xs.p,, ..., and, finally,

the largest is denoted by X,.,. Thus X1.p, < Xo.p <+ < Xyt O

11t is convenient to think of A and B as forming a partition of the individual space I so that AN B = {} and AUB = I,
but only the disjointness condition is necessary to the decision making model developed here.
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For the case that the X;’s are independent and identically distributed, it is well known that the

distribution function of Xj;.,, is

n

Fin(e) =3 (”) [F@IT - F@

r=t

and that the density function is

hle) = o= PEN T - F@I @)

(i—1)i(n—q

where F' is the distribution function of the X;’s and f is the density function. For many of the order statistics
which appear in the subsequent analysis, the underlying random variables are not identically distributed,
but are partitioned into two sets within each of which the random variables are identically distributed. Of
particular intcrest is the conditional distribution of the maximal order statistic, given that its underlying
random variable possesses a particular distribution. This statistic is shown in Sections 5.1.2 and 5.1.3 to be

related to the fitness distributions of individuals surviving tournament selection.

Theorem 5.1.2 Let (X1,...,X,, ) be nx > 0 identically distributed random variables with density function
f and distribution function F. Also, let (Y1,...,Y,, ) be ny > 0 identically distributed random variables with
density function g and distribution function G. Finally, let Z be a random wvariable with density function
fa. If the X;’s, the Y;’s, and Z are mutually independent, then the conditional distribution function of Z

gwen that nx >0= 22> X, ,;in, andny >0=22>Y,, n, 1

26 = K[ falFEMGE d: .

and the conditional density function is

h(t) = Kfa@F@[G@r ,
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where

1
2% (2)|Px[G(2)]™ dz

e

Proof: Suppose first that nx > 0 and ny > 0. The joint density function of Z and the order statistics
Xiinygs- s Xnymy ad Y1y ..., Yy, .n, may be found by transformation of variables [41] and their mutual

independence to be

nx ny
hl,...,nxznx;l,...,ny:ny;z(wla see awnxayla e aynyaz) = lnx' H f(wT)] lnY' H g(ys)] fQ(Z) .
r=1

s=1

The joint density function of X, :ny, Ynyiny, and Z is found by “integrating out” the remaining variables,

where the limits of intcgration are determined by the dcfinitions of the order statistics:

h’nxinx;nyiny;z(wnxvyny7Z) = nX'nY'f(an (yny)fﬂ()

[/ / Fle1) - f(@ny 1) day - dmnx_l]
[/ N / i 9(y1) -~ 9(yny ) dyr - - dyny_l]

= nxny!f(2Zny)9(Yny ) fal2) [[F((SZXE]T){!I] [[G((z;yz]z’l]

= nxny f (o )9 oy ) fa()F (@)™ G (yny )™
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The conditional distribution function is thus

e

H(t) PI'[Z S t | Z Z aninx A Z Z Y’ny:ny]

PriZ <tAZ 2> Xpyinx NZ 2 Yoyiny ]

Pr[Z > Xoyinx NZ > Yoy iny )
fi ff ff P yinyinyiny;2(2, 4, 2) de dy dz
O f b xinxiny iny12(2,Y, 2) de dy dz
J o FoP ("> [G ()] dz
S fQ( [F(2)]™*[G(z)]" dz

Now suppose that nx > 0 and ny = 0. Then the joint density function of X, ., and Z is

hnX:nX;z(xnxaz) = an(an)fQ(Z)[F(xnx)]nX71 ’

and the conditional distribution function is

i

o0 fjoo Ponxinx;z (-%Z) drdz

7o = Eooo fi,ohnx gz (%, 2) dr dz
_ S @) de
% fa(2)[F(2)]"x dz

_ S @G d

ix;o fgg(Z)[F(z)]“Y[G(Z)]ny dz

Likewise, for nx = 0 and ny > 0 the joint density function is

hny:ny;z(yny’z) = an(yny)fQ(Z)[G(an)]nY717

and the same conditional distribution function is obtained. Finally, for nx = ny = 0, the density function
is just fq, and again the same conditional distribution function is obtained. It remains only to note that the

conditional density function & is the unique function satisfying H(t f_ |
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5.1.2  Decision Making With Trivial Thresholding. Define the random variables X £ $.(a) and
y &2 ®.(b) where a € A and b € B are randomly chosen individuals. The distribution functions F' and G of
X and Y respectively are called the fitness distribution functions or simply fitness distributions. When they
exist, the corresponding density functions f and g are called the fitness density functions or fitness densities.

To each of these definitions corresponds an obvious “conditional” counterpart.

One type of conditional fitness distribution of interest is that for an individual with a given number
of ancestors belonging to a particular class, since these are the fitness distributions of individuals surviv-
ing sclection. Informally, an individual’s anccstors arc thosc individuals against which it compctces, cither

cxplicitly or implicitly. This is made precisc by the following definition.

Definition 5.1.3 (Ancestor): Leta € P(t). Ift =0 and a € A then (in the population P(0)) a possesses
one ancestor in A (itself). If t =0 and a & A then (in the population P(0)) a possesses no ancestors in A.

Fort > 0:

e Ifin P(t—1) a possesses n ancestors in A and it is selected in a tournament in which no probabilistically
6-compatible second individual is found then (in the population P(t)) a possesses n ancestors in A (the

ancestors of a in P(t—1)).

e Ifin P(t — 1) a possesses m ancestors in A, where 0 < m < n, and it is selected in a tournament in
which the second individual b possesses n—m ancestors in A then (in the population P(t)) a possesses

n ancestors in A (the ancestors of a in P(t — 1) together with those of b in P(t —1)).

O

Because the more fit individual wins each tournament with probability 1, every individual a € P(¢) is
at least as fit as each of its ancestors. This straightforward observation leads to the following key element
of the decision making model, which relates the conditional fitness distribution of an individual to the

(unconditional) fitness distributions of its ancestors.
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Corollary 5.1.4 Let a € A C I, and let B C I such that AN B = {}. Then the conditional fitness

distribution of a given that

e a hasnyx > 1 ancestors in A (including itself), has ny > 0 ancestors in B, and has no other ancestors;

o those ancestors in A have fitness density f and fitness distribution F';

e those ancestors in B have fitness density g and fitness distribution G; and
o the fitnesses are mutually independent

8

B = K [ f@P@G@) d .

and the conditional density is

Wty = KfQF@OEH)™
where

1
J2o F@)[F ()]G ()] da

>

Proof: Let Z be the fitness of a, (X31,...,X,, 1) the fitnesses of the remaining ancestors in A (if any),
and (Y3,...,Y,, ) the fitnesses of those ancestors in B (if any). Because a is at least as fit as every ancestor,
it is in particular at least as fit as any ancestorsin A. Hence,nx > 0= Z > X, ,—1:n,—1. But a is also

at least as fit as those ancestorsin B, so ny > 0 = Z > Y,,,.n, . The conclusion follows immediately from

Theorem 5.1.2. [ |
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The next theorem states the probability of correct decision making as a function of the number of

ancestors belonging to cach class for cach of the competing individuals. Without loss of gencrality, this

research defines a “correct” decision to be one in which the individual in A is more fit than the one in B.

Theorem 5.1.5 Leta€ ACI and b € B C I, where AN B = {}. Also, suppose that

(2) (2)

1. a has ny’ > 1 ancestors in A, has ny

> 0 ancestors in B, and has no other ancestors;

2. b has n()?) > 0 ancestors in A, has ngo) > 1 ancestors in B, and has no other ancestors;

3. those ancestors in A (of either a or b) have fitness density f and fitness distribution F;

4. those ancestors in B (of either a or b) have fitness density g and fitness distribution G; and

5. the fitnesses are mutually independent.

Then the probability that a is the more fit individual is

a b b
(() (a)  (b) g/)):

d\Nx s Ny "Ny, T

KR [~ joF@rs e [ serer e

— 00

where
K™ 2 % ) @
ST ()™ MG (x)]™Y dx
and
K 2 L
(b) _
o9 (@))% [G(2)]"Y " da

“ldsdt

Proof: Let hs be the conditional fitness density of a given conditions 1, 3, 4, and 5. Also, let Hg be the

conditional fitncss distribution of b given conditions 2, 3, 4, and 5. Then the probability that a is more fit
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than b is just ffooo ha(t)Hg(t)dt. By Corollary 5.1.4,

ha(t) = K@ (@[PS GO

and

t
Ho(t) = K [ g6 P ds .
The result follows immediately. |

5.1.8 Decision Making with Nontrivial Thresholding. This section extends the results of Sec-
tion 5.1.2 to consider the effect of thresholding on the probability of correct decision making. Define the
set £2(D) of those pairs of individuals (a,b) for which a belongs to A, b belongs to B, and the individual
similarity is D. That is,

Q(D) £ {(a,b) € A x B:d((a,b) = D} ,
where d is the individual similarity, and it is understood that A, B C I with AN B = {}.

Corollary 5.1.6 Let a € A C I, and let B C I such that AN B = {}. Then the conditional filness

distribution of a given that

e a has nx > 1 ancestors in A (including itself), has ny > 0 ancestors in B, has no other ancestors,

and has fitness density fq;
o those ancestors in A, excluding a itself, have fitness density f and fitness distribution F;

o those ancestors in B have fitness density g and fitness distribution G; and

the fitnesses are mutuelly independent

8

B = K[ fal@)P@] (6] do .
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and the conditional density is

ht) = Kfa@F@OI GO |

where

1
12 fa(@)[F (2)"x G (2)]™ do

I

Proof: Let Z be the fitness of a, (Xi,...,X,,—1) the fitnesses of the remaining ancestors in A (if any),
and (Y3,...,Y,, ) the fitnesses of those ancestors in B (if any). Because a is at least as fit as every ancestor,
it is in particular at least as fit as any ancestorsin A. Hence,nx > 0= Z > X, ,—1:n,—1. But a is also
at least as fit as those ancestorsin B, so ny > 0= Z > Y, .»n,.. The conclusion follows immediately from

Theorem 5.1.2. [ |

The next theorem states the probability of correct decision making as a function of the number of
ancestors belonging to each class for each of the competing individuals and the similarity of the competing

individuals.

Theorem 5.1.7 Let (a,b) € QD). Also, suppose that

1. a has ng?) > 1 ancestors in A, has ngf) > 0 encestors in B, has no other ancestors, and has fitness

density fqo;
(b)
Y

2. b has n()?) > 0 ancestors in A, has ny’ > 1 ancestors in B, has no other ancestors, and has fitness

density go;

3. those ancestors in A (of either a or b, but excluding a itself) have fitness density f and fitness distri-

bution F';
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4. those ancestors in B (of either a or b, but excluding b itself) have fitness density g and fitness distri-

bution G; and
5. the fitnesses are mutually independent.

Then the probability that a is the more fit individual is

palr g ) =

b)

KO [~ P e [ saoieert 6ot s

where
K® = 1( ) (@)
J2o fa@)[F(2)]"x HG(z)]™Y da
and
K® 2 1

I (@) F @) [Go)]  da

Proof: Let hs be the conditional fitness density of a given conditions 1, 3, 4, and 5. Also, let Hg be the
conditional fitncss distribution of b given conditions 2, 3, 4, and 5. Then the probability that a is more fit

than b is just ffooo ha(t)Hg(t)dt. By Corollary 5.1.4,
(a) (a)
ha(t) = K@ fo()[F ()" ~G(0)]™

and

o) =K [ galo) GO PIY ds

The result follows immediately. [ |
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5.2 Dynamical Systems Model

In this section, the expected distribution of individuals between competing classes after selection is

obtained. Specifically, the section investigates the effects of binary tournament selection (BTS) with proba-

bilistic thresholding on the distribution of individuals belonging to classes A and B where AN B = {} and

AUB=1

As in the analysis of building block filtering, the population is modeled via a population vector based

on that proposed by Liepins and Vose [49]. The model is more general than that of Liepins and Vose in that

the components of the population vector define a density function over a set of equivalence classes which

form a partition of the augmented individual space F271x N x N.

Specifically, the population vector is of the form

where

and

(B)

ne-

e

pd)

p

p(Aoo)

plAio)

p(Boo)

p(BiO)
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p(AOJ)

p(Aij)

p(BOj)

p(Bij)

(12)




Each component p(4is) (resp. p'Bii) is the probability that an individual sampled from the population
belongs to the equivalence class A;; C I (resp. Byj C f) consisting of thosc individuals which arc in A (rcsp.

B), have ¢ ancestors in A, and have j ancestors in B.

The effect of tournament selection on the population is modeled as a deterministic transition function
T, mapping the current population vector p to the expected next population vector 75(p). By the law of
large numbers, the next population vector in an infinite population algorithm exactly matches the expected

population vector. Thus, the model developed here is cxact for such algorithms.

Furthermore, as demonstrated by Vose and Wright [74], the transition function 7, is independent
of population size u, assuming that the next population results from p independent, identically distributed
choices. For binary tournament selection, this assumption holds when the competing individuals are selected
with replacement, regardless of population size. Hence, the model is also an exact expected value model for

such algorithms.

Finally, for trivial thresholding (i.e. when all individuals are #-compatible with probability 1), the ex-
pected population is independent of whether individuals are selected with or without replacement. Therefore,

the model is also an exact expected value model for these algorithms.

The model is not necessarily exact for finite population size algorithms with nontrivial thresholding in
which individuals are selected without replacement. Consider the case in which the most fit individual is 6-
compatible with probability 1 with at least three other individuals, all other individuals are probabilistically
0-compatible with probability 0 with each other, and the shuffle size is very large. If individuals are selected
with replacement, then the best individual is expected to compete in and win at least three tournaments.
On the other hand, if individuals are selected without replacement, then the best individual is expected
to compete in only two tournaments. Thus, the expected population under selection without replacement
differs from the expected population under selection with replacement, which is predicted exactly by the

proposed model.
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In summary, the proposed model is exact (at least in expectation) for algorithms having any of the

following propertics:

¢ infinite population size,
e competing individuals are selected with replacement, or
e trivial thresholding.

Each tournament conducted by BTS with probabilistic thresholding may be viewed as a Markov chain, which
this section analyzes at successively decreasing levels of abstraction (increasing levels of detail). The more
abstract Markov chains (Section 5.2.1) view each tournament as a sequence of two state transitions — one
corresponding to selection of the first individual, the other to the selection of the second individual and
determination of the winner. The less abstract (more detailed) Markov chains (Section 5.2.2) focus on the

state transitions required to search for a #-compatible second individual before a winner can be determined.

5.2.1 High-level Markov Chain.  The most abstract view of a binary tournament (of those considered

here), which is called MC-0, is represented as a state transition diagram in Figure 20. The five states of

MC-0 are:

e sy Initial state.

e s(4): The first individual is in 4.2
e s(B): The first individual is in B.
® s4: The winner is in A.

e sp: The winner is in B.

The transition probability from so to s4) is the probability p(4)(t) = Zi’j p4i)(t) that an individual

drawn from the current population P(t) is in A. For the initial iteration of selection (¢ = 0), this probability

2Throughout this section, single superscripts refer to the first individual. The first (second) element of an ordered pair
superscript refers to the first (second) individual. Finally, subscripts refer to the tournament winner.
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Figure 20. MC-0: High-level Markov Chain Model of a Binary Tournament.

is determined entirely by the distribution from which the initial population P(0) is drawn (Section 5.3).

Thereafter, it is determined by the following recurrence relation.

Theorem 5.2.1 Let a(AA)(t) be the conditional probability that the winner of a tournament in generation t
is in A given that the first individual is in A. Also, let a;B)(t) be the conditional probability that the winner
of a tournament in generation t is in A given that the first individual is in B. Finally, let a be randomly

drawn from the population P(t+ 1), where t > 0. Then the probability that a € A is
PO+ = pV [0 -aP )]+ @) -

Proof: The probability that an individual drawn from population P(¢t + 1) is in A is just the probability

that the winner of a tournament in generation ¢ is in A. The latter is the absorption probability from sg
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into s4 in generation ¢, so that

pOE+1) = PN (1) +pP ()P (1)
= "Wty + [1- 0] P

= /20 2500 - 0)] + X0 -

Due to symmetry, an analogous relation holds for p(&).

The transition probability a&A)(t) is the conditional probability that the winner of a tournament in

generation ¢ is in A given that the first individual is in A4, and a&B) (t) is the corresponding probability given
that the first individual is in B. Both dcpend on the probabilitics of correct decision making, and thus on
the number n4 of the first individual’s ancestors in A and the number ng in B (see Section 5.1). Thus, it
is necessary to consider the less abstract (more refined) Markov chain MC-1 which explicitly depicts these

dependencies (see Figure 21). The states of MC-1 are:

e sg: Initial state.

(Anang) a4 >1,np > 0,m4 +np < 2': The first individual is in A, has n4 ancestors in A, and has

® s
npg ancestors in B.

B

o s(Brans) ny >0,np > 1,n4 +np < 2% The first individual is in B, has n4 ancestors in A, and has

npg ancestors in B.
® 54,021,520, +7< 2¢+1: The winner is in A, has ¢ ancestors in A, and has j ancestors in B.
® 5,1 20,7>1,1+7< 2¢+1: The winner is in B, has ¢ ancestors in A, and has j ancestors in B.

As previously mentioned, the transition probability p(A"A"B)(t) from sq to s(4nans) is the probability that

an individual drawn from the population P(t) is in A, has n4 ancestors in A, and has np ancestors in B.
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Figure 21. MC-1: High-level Markov chain model of a binary tournament explicitly depicting the depen-
dence of the transition probabilities on the first individual’s ancestors.

Like p(4)(t), it satisfies a recurrence relation, given in the following theorem. Again, the initial condition is

determined by the distribution from which the initial population P(0) is drawn.

Theorem 5.2.2 Let p(4)(0) be the probability that an individual drawn from the initial population P(0) is

in A. Also, let a be drawn randomly from P(0). Then the probability that a € A;j is

(A) g .
- pPM0) ,ifi=1landj=0
P 0) =

0 , otherwise

Anyn . e . ) :
Furthermore, let ozil“_*‘ B)(t) be the conditional probability that the winner of a tournament in generation t

is in Ay; given thet the first individual is in A, ,,,, and let af:*‘”B)(t) be the conditional probability that

97



the winner of a tournament in generation t is in A;; given that the first individual is in B Finally, let

nAnp

a be drawn randomly from P(t+ 1), where t > 0. Then the probability that a € A;; is

p(AzJ) t+1 ZZ [ "A"B) OéilA,,,'A"B)(t) +p(B"AnB)(t)aE43_T_LAnB)(t)j|

ij ij
A "B

Proof: Every individual in the initial population P(0) has exactly one ancestor (itself). Also, the proba-
bility that an individual drawn from population P(¢+1) is in A;; is just the probability that the winner of a
tournament in generation ¢ is in A;;. The latter is the absorption probability from sg into s4,, in generation

t. |

Again, due to symmetry, an analogous result holds for the p(B“)(t)’s.

5.2.2 Low-level Markov Chain.  The transition from s(4»ans5) to sa,; or sp,; in MC-1 involves the
intermediate steps required to search for a #-compatible second individual. These steps form a Markov chain
MC-2 for which some of the transition probabilities depend on n4 and ng. Figure 22 shows MC-2, which
may bc viewed as a fragment of a still more refined Markov chain modecl of the overall tournament. The

states of MC-2 are:

e s(4n4.np);: Tnitial state. The first individual is in A No candidate second individuals have been

nangp-

considered.

A, . e . . . g
. si A B), 0 <7 < ngp: The first individual is in A,,,,,. Furthermore, 7 second individuals have been

considered and probabilistically found not to be #-compatible.
e sa (and sg,, )8 2>1,7 20,0475 < 2': The winner is in A;; (resp. Ay, np)-
e sp,i20,7>114+75< 2': The winner is in B;;.

in MC-1 is the conditional probability that the winner of a tournament

The transition probability oz( o "B)( t)

in generation ¢ is in A;; given that the first individual is in 4 The following theorem provides an

naAnNg:*

expression for aE‘::A "B)(t) in terms of the transition probabilities of MC-2.
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§(Anqng)

(Anynp)
nshfl

Figure 22. MC-2: Markov chain model of the search for a probabilistically #-compatible second individual
and the determination of the tournament winner. The first individual is in A, has n 4 ancestors
which are in A, and has npg ancestors in B. Dependence of the transition probabilities on the

iteration t is notationally suppressed for visual clarity.
Theorem 5.2.3 Suppose that

. df::“"‘g)(t) 18 the conditional probability that a candidate second individual in generation t is proba-

bilistically 6-compatible and the tournament winner is in A;; given that the first individual is in A, .,

o CY s the conditional probability that o candidate second individual in generation t is not probabilis-

tically 6-compatible with the first individual given that the first individual is in A, .., ond

® ngp ts the shuffle size.
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Then the conditional probability that the winner of a tournament in generation t is in A;; given that the first

individual is in A, ., s

nsp 1 r N
) = aem ) S 0] b, 0]
r=0

where 0;; is the Kronecker delta.

Proof: The transition from state s4rans) to state s4,; in MC-1 (see Figure 21) is equivalent to the
corresponding absorption event in MC-2 (see Figure 22). Thus, the transition probability a( "A"B)(t) is
equal to the probability of the absorption event, i.e.

Gomans)(g)

J

|fbsh 1 [C(A)] "A"B)(t) + 0insdjng [C(A)]Mh 1]

r=0

nshfl

= alre (1) 30 [eD] + Ginatyn, [CW]
r=0

3

The next theorem provides a similar result for the MC-1 transition probability a( ’,'A"B)( t), which is the

conditional probability that the winner of a tournament in generation ¢ is in B;;, again given that the first

individual is in A, p,.
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Theorem 5.2.4 Suppose that

. d;A’,'A"B)(t) 18 the conditional probability that a candidate second individual in generation t is proba-

i3

bilistically 6-compatible and the tournament winner is in B;; given that the first individual is in Ay pny,

and

o C is the conditional probability that a candidate second individual is not probabilistically 8-compatible

given that the first individual is in An  np.

Then the conditional probability that the winner of a tournament in generation t is in B;; given that

the first individual is in A, n, S

nshfl

Apn A(Anyn "
oG = agrw Y ()]
r=0
- ench 7 , ansition from si"Am8) 1o o ; o (Anang) < sambli
For each r € {0,...,nsp, — 1}, the transition from s, to s4,;, SBy;,s OT S, involves sampling the

population to choose a candidate second individual, determination of compatibility, and (possibly) determi-
nation of the more fit individual. Furthermore, the probability of correct decision making depends on the

thresholding distance D (see Section 5.1).

Thus, it is necessary to consider another “lower-level” (more refined) Markov chain MC-3 in which
these steps and dependencies appear explicitly. For r < ngyp, the transition probabilities do not depend on
7. Thus it is sufficient to consider a representative fragment for which the first individual is in A, ,,, and r
candidate second individuals have been considered and found not to be probabilistically #-compatible. MC-3

is shown in Figure 23. Its states are:
(A

® 5, "A"B): Initial state. The first individual is in A,, .., and r candidate second individuals have been

considered and found not to be probabilistically #-compatible.
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Figure 23. MC-3: Fragment of “low-level” Markov chain model of selection of the second individual in
BTS with thresholding and finite shuffle size. The first individual is in A, has n4 ancestors in
A, and has npg ancestors in B. Also, » candidate second individuals have been found not to be
probabilistically #-compatible.
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. siﬁ"A"B)(D),O < D < Dpax: The conditions of sguA"A"B) hold. Furthermore, the candidate second
individual has individual similarity D from the first individual and isin A — A;_,,, j_n, (le. isin A

and either 1) has other than ¢ — n4 ancestorsin A, or 2) has other than j — np ancestors in B).

. sfqg"“"”)(D),O < D < Dpay: The conditions of squ"A"”) hold. Furthermore, the candidate second

individual has individual similarity D from the first individual and isin B — B;_,,, j—nj-

. sig"A"B)(D),O < D £ Dyax: The conditions of squ"A"B) hold. Furthermore, the candidate second
individual has individual similarity D from the first individual and is in A; ,, ; ny-

. sg,i"A"B)(D),O < D < Dpax: The conditions of sguA"A"B) hold. Furthermore, the candidate second

individual has individual similarity D from the first individual and is in B;_,,, j_pnj-

. s(énA"”)(D), 0 < D < Dpax: The conditions of state s(i"“ ’"”)(D) hold. Furthermore, the individuals

r, ry

are probabilistically 8-compatible, hence a “decision” must be made.

. sffi’{“f’) (depicted twice): The candidate second individual is not probabilistically §-compatible. This

state coincides with the “next” state of MC-2 (Figure 22).
® 54,.: The tournament winner is in A;;.
¢ sp,;: The tournament winner is in B;;.

e sp (depicted twice): Represents the union of all MC-2 final states not explicitly depicted, i.e.

A
SF= U {SA;WSB”} .
(2,5 #(5.9)

The transition probability df:t?“"‘g)(t) in MC-2 is the conditional probability that a candidate second

individual in generation ¢ is probabilistically #-compatible and the tournament winner is in B;; given that

(AnAnB)

the first individual is in A The following theorem provides an expression for ay, (¢) in terms of

UVNLT

the transition probabilities of MC-3.
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Theorem 5.2.5 Suppose that

(AnAnBLA
i—n4,j—NB

(D,t) is the conditional probability that an individual drawn from the current population

has individual similarity D from the first individual and is in A;_n, j_ny, given the conditions of state

(An n )
Sy AT"B ;

] 751_4;;‘:}’3_):; (D,t) is the conditional probability that an individual drawn from the current population

has individual similarity D from the first individual and is in B;_,, , j_n,, given the conditions of state

"A"B).
’

(A
Sr

. cgl’A) is the conditional probability that the individuals are probabilistically 0-compatible given given

the conditions of state s 3"A"F’)(D);

c(,;l’B) 18 the conditional probability that the individuals are probabilistically 8-compatible given the

conditions of state s( "A"B)(D); and

e py(na,np,i — na,j — np, D) is the conditional probability that the first individual is more fit (see

Section 5.1) given the conditions of state SA"A"B (D).

Then the conditional probability in generation t that o candidate second individual is probabilistically 0-

compatible and the tournament winner is in A;; given that the first individual in is Ay ny is

& (1) = 30 [a e (D) + 4o D (D, pa(nasns,i = na,j - ns. D)

Vi na,j—np Vi na,J—NB
D

( "4, "B)

Proof: The transition event from s, to state s, in MC-2 (see Figure 22) is equivalent to the

corresponding absorption event in MC-3 (see Figure 23). Thus, the transition probability a( "A"B)(t) is

equal to the probability of the absorption event. |

The next theorem provides a similar result for the MC-2 transition probability a( f'A"B)( t), which is the
conditional probability that a candidate second individual in generation ¢ is probabilistically #-compatible

and the tournament winner is in B,;, again given that the first individual is in A, p.
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Theorem 5.2.6 Suppose that

(AnAnB) B

® Y g (D, t) is the conditional probability that an individual drawn from the current population has

individual similarity D from the first individual and is in B;_,,, j_ny, given that the first individual is
in Annp, and v candidate second individuals have been considered and found not to be probabilistically

#-compatible;

. c(,;l’B) 1s the conditional probability that the individuals are probabilistically 8-compatible given the
conditions of state s( "A"B)(D); and

e py(na,np,i — na,j — np, D) is the conditional probability that the first individual is more fit (see
Section 5.1) given the conditions of state sf,g“"f’ (D).

Then the conditional probability in generation t that e candidate second individual is probebilistically 6-

compatible and the tournament winner is in B;; given that the first individual in is A, ., is

Ay A ng B s . .
05( ',J.A B)(t) = E_ni,;ﬁ_n;(Dat)c_(DA B)[]- —Pd(nAa'"/BJ —N4,] — nB’D)]
D
( "4, "B)

Proof: The transition event from s, to state sp,, in MC-2 (see Figure 22) is equivalent to the

corresponding absorption event in MC-3 (see Figure 23). |

Finally, the following theorem provides the probability that a candidate second individual is not probabilis-

tically #-compatible.

Theorem 5.2.7 The conditional probability that a candidate second individual is not probabilistically 6-

compatible given that the first individual is in A, ., is

W = 1=} ‘“)ZZ D1 + ““B’ZZ,:/::;B’W (D.1)

D
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Proof: The conditional probability that a candidate second individual is not probabilistically #-compatible,

given that the first individual is in A, ,n,, is equal to the transition probability from 5( )(nA,nB) to

55,?_)170(n,4,n3). This is given by

D) L= g e D [P

oA — Z

z j

>
ZZZ[ Arans (D gy 4 (A"A"B)(D t)]

= 1.
1
S ST Y S o)
D
= 1-3 c““”ZZ Dt+(AB)ZZzZiZB)n3th) :
D 7
which does not depend on r. [ |

This section concludes with the observation that Kargupta’s model of BTS (Section 2.6.5.2) may be

obtained as a special case of the model developed in this chapter by assuming that

a compatible second individual is found for every tournament,

e no individual contains multiple building blocks,

every individual which contains any building block is more fit than every individual which contains no

building blocks, and

the probabilities of correct decision making are static (i.e. independent of the generation ).

5.3 Distribution of Fitnesses in a Uniform Random Population

The probability of correct decision making, and consequently the distribution of individuals between
competing classes, depends on the fitness distributions of the ancestors of the competing individuals (see
Sections 5.1 and 5.2). The fitness distributions are determined by the distribution from which the initial

population P(0) is drawn, as well as the fitness function itself.
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This section presents the fitness distributions obtained in the case of linkage-friendly genetic algorithms.
The analysis focuses on the first two central moments (i.e. the expected values and variances) of the
fitness distributions resulting when then fitness function is separable (see Section 5.3.1). The competing
classes under consideration are the class Ig of individuals containing building block 3 and the class I 5 of
individuals lacking building block 8. These classes are formally defined in Section 5.3.1, along with several
other classes which appear frequently in the analysis. In each case, two distributions are considered. The
first is the (unconditional) fitness distribution of the class (Section 5.3.2). The other is the conditional fitness
distribution given also that the individual is a member of a pair of individuals drawn randomly from the set

of pairs having individual similarity D (Section 5.3.3).

5.3.1 Preliminaries. As discussed in Section 2.6, the class of linkage-friendly genetic algorithms
includes the fast messy genetic algorithm (Section 2.6.4). More generally, it includes the generalized fast
messy genetic algorithm proposed in Chapter III. Three properties of these algorithms which are of use in

the analysis of this section are:

o the individual space I consists of ordered pairs of finite sequences, where elements of one sequence are

alleles, and elements of the other sequence are loci (see Section 2.6.1);

e evaluation of individuals in which one or more loci do not occur relies on default values specified by

the competitive template (see Section 2.6.1); and
¢ the initial population is uniformly distributed over the set I(\) of length A non-overspecified individuals.

The notations I(A), I, Ig(A), and I_g(A) for important subsets of the individual space I are introduced
in Sections 2.6.1 and 4.1.1. It is convenient to introduce special notation for other frequently mentioned

subsets of I, which simplifies the analysis presented in the sequel.

e For cach A € {0,...,£} and each i € {1,...,m}, let ¢ € Ir and define

I,(\c)E{(al) eI(N) :~(VLe L)(Vj € L)l = L = aj = c1]} .
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Then I, (A, ¢) is the set of length A individuals which disrupt the competitive template ¢ with respect

to subfunction i.

e For each A € {0,...,¢} and each 7 € {1,...,m}, define

>

Iy, (Ae) =I(A) = Iy (Asc)

Then I_,,(X, c) is the set of length A individuals which do not disrupt the competitive template ¢ with

respect to subfunction i.

Certain intersections of these sets are also frequently mentioned. These intersections are denoted by con-
catenation of subscripts. When subscripts refer to (possibly) different subfunctions, a comma is inserted for

clarity, e.g. for each A € {0,...,£} and each ¢ € {1,...,m},

I mina(0r€) 2 I5(N) N Ii(A) N [, (A )

is the sct of length A individuals which contain building block 3, lack building block %, and disrupt the

competitive template ¢ with respect to subfunction i.

It is also convenient to introduce special notation for the cardinalities® of these sets. In general, the
number of individuals contained in a set Is(A) is denoted Ng(A), e.g. the number of length A individuals
containing building block 3, lacking building block , and disrupting the competitive template ¢ with respect
to subfunction ¢ is Ng iy, (A, ¢). Analytical expressions for those cardinalities which appear in the analysis

are given in Appendix A.

Also, the set of pairs of individuals which share some number of defining loci appears frequently in the

sequel. Let A.(x1,X2) denote the number of common defining loci of individuals x; and x2. That is,

Ac((ar,ly), (a2, 12)) £ card({L € £: (Jir, iz € £)[lni, = lag, = L]})

3This research considers only the case of a finite genic alphabet .A.
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Also, let w(A1, Az, Ac) be the set of individual pairs (x1,X2) for which x; contains building block 8 and is of

length A1, X2 does not contain building block § and is of length A», and A.(x3,%x2) = A.. That is,

w1, Aoy Ae) 2 {(x1,%2) € Ig(A1) x Top(A2) : Au(Xy, X2) = Ao} .

The set w(A1, Az, Ac) is related to the set (D) consisting of pairs of individuals in A X B having individual
similarity D (see Section 5.1). In particular,if A = Ig(A1), B = I-g()2), and D = d(x1,x%2) =S min{Aq, A2} —

Ac(Xl,Xz), then Q(D) = w()\l,Az,AC).

Finally, the fitness distributions considered in Sections 5.3.2 and 5.3.3 are those associated with fitness
functions which can be written as the sum of independent subfunctions. The following results are used
so frequently in their analysis that they are stated as lemmas. The first shows that certain interesting

conditional variances vanish.

Lemma 5.3.1 (Special conditional variances of subfunction contributions) Lei ® = Yot I x
Ir — R be a separable fitness function, ¢ € Ip, and X ~ U(I(A)). Then the conditional variance of
$:(X,c) given that X contains building block i is zero. Also, the conditional variance of ¢;(X,c) given that
X does not disrupt ¢ with respect to subfunction ¢ is zero. Finally, the conditional variance of ¢;(X,c) given

that X lacks building block i and does not disrupt ¢ with respect to subfunction ¢ is also zero, i.e.

Var [¢:(X,c) | X € L(X)] = Var [¢,(X,¢c) | X € I, (A)] = Vor [¢i(X,¢) | X € I;—y,(A)] =0 .

Proof: x € I;(A) = ¢i(x,c¢) = ¢}. Thus,

Var [$:(X, ) | X € L(A)] = € [{$:(X,¢)}* | X € L] = {€ [$:(X,¢) | X € LNIY = (¢])" ~ (¢7)* =0 .

Likewise, x € I_;—,(A) = x € I, ,(A) = ¢;(x,¢) = ¢:(c,c), which is also independent of x. |
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The second lemma is a general result of mathematical statistics, although it is not found in many standard

references (e.g. [2, 41, 53]). It is used frequently in the sequel for obtaining conditional variances.

Lemma 5.3.2 (Decomposition of (non-central) conditional second moment) Let X be a random
variable with space S, f: S — R, and k € R. Also, let A C S such that ps 4 2S¢ [f(X)| X € A] and

Var [f(X) | X € A| 2 € [(£(X) — pjja)? | X € A] exist. Then

ENF(X) = k)| X € A] = Var [f(X) | X € Al + (ns1a — )’

Proof: By the linearity of the expected value operator, £ [f(X) — ppa | X € A] = 14 — pf1a =0, s0

Var [f(X) | X € Al + (usja — k)

= Ef(X)—nsa) | X € Al+ (ngja — k)

= E(A(X)—ppa)® | X € Al+2(nga— k)€ [F(X) = ppa | X € A+ (g4 — )
= E(f(X) = ppa)® +2(F(X) = mpia)(ps1a — k) + (g1 — k) | X € 4]

= LX) =)+ (pa—k)} | X € 4]

= ) -R? X e4] .

5.3.2 Central Moments of Unconditional Fitness Distributions. In the following theorem, decom-
positions of the first two central moments of a particular subfunction’s contribution to an individual’s fitness
are obtained. For a subfunction ¢, each quantity is expressed as a linear combination of three appropriate
conditional expectations: that given that the individual contains building block ¢, that given that the indi-

vidual docs not disrupt the competitive tcmplate with respect to subfunction ¢, and that given that ncither of
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these conditions holds. These decompositions are useful in the analysis of the fitness distributions associated

with both types of individuals.

Theorem 5.3.3 (Subfunction contribution expectations) Let & 2 >ibi: IxIp — R be a separable

fitness function, ¢ € Ip, and X ~ U(S) where S C I(X). Then the expected value of ¢;(X,c) is

pi(S,c) 2 card(8)7t- { ¢r - card (SN LX) (13)
+ p;(S,¢) - card(SNIy,(Xc))

+  ¢ilc,c) - card (SN Iy, (A c)) } ,

where

p(S,e) & €pi(X,0) | XeSnTI, (M) . (14)
Also, the variance of ¢;(X,c) is
o2(S,c) 2 % { (67 — (S, )2 - card(S N L(N)) (15)
(SO (S0~ (S.0F ) end (S0 L (1,0)
+ [#i(c,c) — pi(S,c)* - card(SN 1., (Ac)) } ,
where
o2 (S,¢) & Var [¢(X,c) | X € SN Ly, (Me)] . (16)
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Proof: By definition, the expected fitness contribution of subfunction i is*

2

£ [#:(X,c)] > di(x,c) Pr[X =x] .
x€I(A)

For X ~ U(S), this may be written as

£ xa)] = aara(s) | Y sixe

xXESNI;(A)

+ Z ¢i(x,c)

XESNI. iy, (Ae)

+ > ¢i(x,¢) }

XESOI_.i_.Xi()\,c)

?

card (S)_1 { ¢r - card (SN I;(A))
+ E[pi(X,c) | XeSNILy,(Ac)] - card(SNIy,(Xc))

+ di(c,c) - card (SN Iy, (A c)) }

s (87 C) 5

where we have used the facts that

x € SNL(A) = ¢i(x,¢) = ¢;

and

x €SNI, (A c) = ¢i(x,c) = ¢i(c,c).

4The expectation is taken over all individuals, whether or not they are fully specified with respect to subfunction . This is
not necessarily the same as either the expectation over all individuals which are fully specified with respect to subfunction ¢ or
the expectation over all length A individuals which are fully specified with respect to subfunction 7. The latter are equivalent,
and also equivalent to

ean2 Y g@D PrlaA=asL=1,
(a,))eARi xx(L;)

which might be referred to as the subfunction mean.
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Similarly, the variance of ¢;(X,c) is by definition®

> { ¢i(x,¢) — € [$i(X, )] }2 PrX =x] ,

xXES

Var [¢:(X, c)]

and for X ~ U(S),

Var [¢:(X, c}]

= Y lgi(x,¢) - pi(S,0))? - Pr[X = x]

xeSs
1
- 34 Y e (S o
XESNI;(A)
+ Z [¢i(xv c) — pi(S, C)]Z
xe8NI_ iy (A€)
+ Z [¢l(x7 C) - IU’Z(S7 C)]2 }
xGSﬁI_.i_‘Xi()\,c)
- 5 { 67 — (S, )P - card (SN IL(N))
+ & [{oi(X,c) — pi(S,0)}? | X € SNIy,(Ac)] - card (SN Iy, (A c))
¥ [bile.c) = (S.OP + card(SN L (Ne)) |
Upon simplification using Lemma 5.3.2, the result follows immediately. |

The constants ¢} depend on the fitness function, as do the p; (S,c)’s, 02~ (S, ¢)’s, and the ¢;(c,c)’s, which
each also depends on the competitive template c. For the cases § = I(A), § = Ig(A), and § = I_g(}A),

analytical cxpressions for the cardinalities of SNI;(A), SNy, (A), and SNI-; ., (A) arc given in Appendix A.

5 Analogous to the preceding remark, the expectation is taken over the set of all individuals of length A. Again, for A # £,
this is not necessarily the same as the expectation over all individuals which are fully specified with respect to subfunction ¢,
whether or not restricted to those individuals of length A. The latter expectations are both equivalent to

Var [¢i(A,L)] £ > {¢:aD) - € [¢:(A,L)]}" -PrlA=anL=1 ,

(a,)eA*ix7m(L;)

which might be referred to as the subfunction variance.
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The next theorem considers the specific fitness distributions associated with random individuals drawn
uniformly from the classes Ig and I_5. The following corollaries present decompositions of the first two
central moments of each of these fitness distributions. For the case of normally distributed fitnesses, the first
two moments determine the distribution. The first corollary relates to the fitness distribution for the class

Is.

Corollary 5.3.4 (Fitness expectations of individuals containing building block) Let ® 2 >
I x Ir — R be a scparable fitness function, ¢ € Ip, and X ~ U(Ig(A)). Then the expected value of ®.(X)

i

£ [P(X)] = ¢Z+Zﬂi|ﬁ()‘ac) ;
iZp

where

pap(he) 2 ﬁ{qﬁ-Nﬁ,i(x)w;(fﬁu),c)-Nﬂ,ﬁix,;(x,c>+¢i(c,c)-Nﬁ,w—ﬁxi(x,c)} . an

and the p; (Ig(A),¢)’s are defined by Fquation 14. Furthermore, the variance of ®.(X) is

Var [2(X)] = N;(A);{ 97 - maphe - Nas()
4 (U0 + i (06 = a0 )+ Moo (he)
¥ (Bee) a0l N he)
£2 5 Cov [iX,0) 45X (18)
1<j i #B,J#B

where the a7 (Ig(N),¢)’s are defined by Equation 16.

Proof: By the linearity of the expected value operator,

E[0:(X)] = Y £ldiXe)] . (19)
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Because X € Ig(A), the term corresponding to i = 3 is just £ [¢p(X, c)] = ¢}, while by Theorem 5.3.3, the

terms corresponding to ¢ # 8 may be written

€ lgi(X,c)] = m{ ¢; - card(Ig(A) N Li(A))
+ p; (Ig(A),c) - card (Ig(A) NIy, (A )

f aled) - NI 0e) |

,U/Zl’g(A, C) 5

which completes the proof of the claimed expected value. Similarly, the conditional variance may be expressed

Z Var [¢Z (Xa C)] +2 Z Z Cov [¢1(X7 C)’ ¢j(X’ C))]

1=1 1<g

ZV&I‘ [¢i(X,C)]+2 ZZ Cov [¢i(xac)’¢j(x’c))] s

iZp 1<J,i#B, 17

Var [®.(X)]

where we have used Lemma 5.3.1. Theorem 5.3.3 implies that the remaining variance terms are

1
Var [¢:(X, c)] = card (I5(N))

{ (67— s, )+ card (I5(3) N L(Y)
+ (U?(Iﬁ(A)vC) + [ (Ip(X),¢) — Mi(lﬁ()\)ac)]2> - card (Ig(A) N iy, (A, €))
+ [$i(c, ) — piZp(A),e)]? - card (Ig(A) N1 iy, (X)) }
It remains only to note that p;(I(A),€) = ps5(A, c). |

The next corollary relates to the fitness distribution for the class I_g.

Corollary 5.3.5 (Fitness expectations of individuals lacking building block) Let ® E S I x

Iy — R be a separable fitness function, ¢ € Ip, and X ~ U(I_g(X)). Then the expected value of ®.(X) is

£ [®(X)] = Zﬂil—'ﬁ()‘ac) )
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where

A 1 X _
til-p(A€) = ———={F - Nopi(A) + p; (I-p(A), €) - Nop —ix, (A, €) + ¢i(c,€) - Nop —iy, (X, €) )

N_p(A)

and the p; (I-g(X),c)’s are defined by Equation 14. Furthermore, the variance of ®.(X) is

Var [8.(X)] =
; ) ; A, €)]? N ogi(A
N-p(A) ; { [¢7 = mi-p(Xe)* - Noga(A)

+ [pi(c,c) — pij-p(A, €)]?

+ ZZ Z Cov [¢i(Xac)’¢j(X7 C))] s

<

where the a2 (I.g(A),c)’s are defined by Equation 16.

4 (a?-uﬁﬂ(x),cw[M(Lﬁu),c)—mhﬂ(xc)]?) C Nopiu(he)

Nop i (A €) }

Proof: Equation 19 holds, and by Theorem 5.3.3, each term may be written

1 *

€ [¢i(X,c)] card (15(\) { b7
+  p; (I-p(A),€)

+ gbi(C,C)

= tu’7,|—|ﬁ(>‘70) 5
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card (I.5(A) N iy, (A, €))

card (I-5(A) N I-i—y, (A €)) }
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6

which completes the proof of the claimed expected value.® Similarly, the conditional variance may be

expressed

Var [0.(X)] = ZVar [$:(X,c)] +2) > Cov [¢:(X,c),¢;(X,c))]

i<j

By Theorem 5.3.3 each variance term may be written

1
Var [¢i(X,c)] = card (Lp (V)
{ 67— mlLp (V)0 - card (Lp(A) N L)

+ (U?_(Lﬂ(A)vc)Jr[#Z(L ()‘)ac)_l‘i(lﬁﬁ()‘)vc)P) - card (Ip(A) N Iy, (A, )

+ [$i(c,c) — ni(Tp(A),c)? - card(I-p(A) N Iiy, (X)) }
Since p;i(I-5(A),€) = p5-g(A, c), the proof is complete. |
5.3.8  Central Moments of Conditional Fitness Distributions.  This section considers the conditional

fitness distribution of individuals X; ~ U(Ig(A1)), given that X; shares A, defining loci with an individual
Xa ~ U(I-5(A2)). It also considers the corresponding conditional fitness distribution for Xa. The following

lemma is important in the analysis of both distributions.

Lemma 5.3.6 (Number of individuals sharing A. defining loci — Part I)

Let ® 2 Y% i I x Ir — R be a separable fitness function, Lg the set of defining loci of subfunction 3,
and k 2 card (Lg). Suppose that x1 € Ig(A1), where I is an IfGA individual space with finite genic alphabet

A and nominal string length £. Then the number of individuals x2 € I_g(A2) sharing A, defining loci with

5 As reflected in the expressions given in Appendix A, the case for which ¢ = 3 has
I.3A) N LQAA) ={} = N-p(A) =0,
Iog(A) N 1ain, (A) = Tnin; (A) = Logy s (A) = Nog i (M) = Ny s (A)

and

L g(A) N Iimy (A) = Tminy (X)) = Tm gy g (A) = N iy (A) = Ny (W) -
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X1 8

NP (A, A, xe) = [card (A)] Gl> (i__/\;)—[card(A)]’\z_k(:\\i:Z> <fz‘_A;C) C(21)

Also, the number of pairs (x1,%x2) € Ig(A1) X I.g(A2) sharing A. defining loci is

card (w(A1, Az, Ae)) = Np(A1) - NP (Mg, Az, X)) (22)

Proof: The sets Ig(A2) and I_g(A2) form a partition of I(A2). Thus,

card ({x2 € Ig(A2) : Ac(x1,X2) = Ac})

= card ({X2 € I()\g) : AC(XLXZ) = AC}) — card ({X2 € Iﬁ(Ag) : AC(Xl,Xz) = )\c})

For arbitrary individuals x2 € I()2), each of the Az alleles has card (\A) possible values. For such individuals
having A, defining loci in common with an individual x;3 € Ig(}A1), the A common loci must be chosen from
the A; loci of x;, while the remaining Ay — A, loci of X2 must be chosen from the £ — A loci for which x;

does not contain genes. Thus,

card ({x2 € I(A) : Ao(X1,%2) = Ac}) = [card ()] <§1> (Azz_—AAl)

For arbitrary individuals x2 € Ig(A2), cach of the & allcles corresponding to the loci of subfunction g is fixed.
The remaining A2 — k alleles have card (A) possible values each. For such individuals having A, defining
loci in common with an individual x; € Iﬁ(/\l), k of the A, common loci are those of subfunction 3. The

remaining A, — k must be chosen from the other A\; — & loci of x;. The remaining As — A, loci of x5 must
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be chosen from the £ — A loci for which x; does not contain genes. Thus,

cart (fxa € Iy0a)  AuGraxa) = o) = leand (= (2T (70

which completes the proof of the claimed expression for Né'@)()\l, A2, A¢). Since x; is arbitrary, every x; €
Ig(A1) has the same number of individuals x2 € I_5(A2) such that (x1,%X2) € w(A1, A2, As), which proves the

claim regarding the cardinality of w(A1, A2, Ac). |

The significance of Equation 21 is not so much the specific expression for Nc(ﬁ)(/\l,/\z, Ac), but rather the
fact that it is independent of x;. That is, for a given A, every individual x; € Iﬁ(/\l) has the same number

of individuals x2 € I_g(A2) with which it shares A, defining loci. The following theorem is a consequence.

Theorem 5.3.7 (Conditional distribution of individuals containing building block)

Let ® 2 >t i I xIp — R be a separable fitness function, and ¢ € Ip. Suppose X1 ~ U(Ig(A1)) and
Xg ~ U(Iﬁﬁ(/\z)) arc independent. Then the conditional distribution of X1 given that A(X1,X2) = A, is

also U(Ig(A1)). That is, the probability that X1 = x1 given that A.(X1,X2) = A, is

x| Ac=A) 2 [N

Proof: By the Law of Total Probability, the conditional probability that X; = x; given that A.(X;,X2) =

Ac 18

hExa | Ac=2A) = Pr[Xi=x | Ac(Xy, Xz2) = A(]

Z PI‘[X1:X1/\X2:X2|ACZ)\C] .
x2€1-5(A2)
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For Xy ~ U(I5(A1)) and Xa ~ U(I_p(A2)) independent, this may be written

.fl(xl | Ac = Ac)

_ Z PI‘[AC(Xl, Xz) = )‘c | X]_ =X3 A Xz = Xz] . PI‘[Xl = Xl] . PI‘[XZ = Xz]
Pr[Ac(Xl,Xz) = AC]

x2€I.5(A2)
[No(A)] - [Nop(A2)] - oy er0ny) PrlA(X1, X2) = A | Xy = %1 A X = Xa]
card (w(A1, Az, Ac)) - [Np(A1)] =2 - [Vop(A2)] 72 '

Because Pr[A.(X1,X2) = Ac | X1 =x3 A X2 =x2] = 1if Ac(x1,%2) = A, and 0 otherwise, this is just

Ax | A=A = card(w(A, Az, A)) - NP (A, Az, Ae)

= [Ns()l ',

where we have used Lemma 5.3.6. [ |

Of course, since the conditional distribution of X is identical to its unconditional distribution, the con-
ditional cxpectations arc identical to the unconditional cxpectations. In particular, the following corollary

gives the conditional cxpectation and variance of the fitness distribution for the class Ig(}).

Corollary 5.3.8 (Conditional fitness expectations of individuals containing building block)

Let ® £ > I x Ir — R be a separable fitness function, and ¢ € Ip. Suppose Xy ~ U(Ig(r1)) and

Xao ~ U(Ig(A2)). Then the conditional expectation of ®.(Xy1) given that A (Xq1,X2) = A, is

E[®e(X1) | Ac(X1,X2) = X] = @5+ > pip(rese)
20
where
A 1 " _
tip(A,c) = m{ﬁbi - Ngi(A1) + 1 (Is(M1),€) - Ng —ix; (A1, €) + ¢i(c, €) - Np mimy, (A1, €)}
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and the p; (Ig(A1),¢)’s are defined by Equation 14. Furthermore, the conditional variance of ®.(X1) given

that AC(XI,Xz) = AC is

Var [®c(X1) | Ac(X1,X2) = Al

1 " 2
= W% { (67 — pap(A,€)]* -+ Npi(A)
+ <Ui2_(1ﬁ()‘1)’c) + [pi (A1,c) = Mim()\lac)]Z) © Ng iy, (A1, ©)
+ [B0:0) — mapO el - Npioi(hne) |
+2 ) D Cov [¢i(Xi,¢),4;(Xs,c)] (23)
i<t B I#B

where the o2 (Ig(A1),¢)’s are defined by Equation 16.
Proof: The result follows immediately from Theorem 5.3.7 and Corollary 5.3.4. |

The remainder of this section considers the conditional fitness distribution of individuals Xg ~ U(I-5(X2)),
given that Xoa shares A, defining loci with an individual X3 ~ U(Ig(A1)). In contrast to the situation for
the class I, here the conditional distribution of fitnesses is not in general identical to the unconditional
distribution. This is becausc for an individual x5 € Iﬁﬁ(/\z) and a given number A, of common defining loci,
the number of individuals x; € Ig(A;) such that A.(x1,X%2) = A depends on the choice of defining loci for

Xg. This is made precise by the following lemma.

Lemma 5.3.9 (Number of individuals sharing ). defining loci — Part II) Let @ 2 St I x
Ir — R be a separable fitness function, Lg the set of defining loci of subfunction B8, and k 2 card (Lg).
Suppose that X2 € I g(A2), where I is an IfGA individual space with finite genic alphabet A and nominal

string length £. Then the number of individuals X1 € Ig(A1) sharing A, defining loci with x4 is

NEP (A, Az, Ae) = [card(A)]thi::gz;) (fl_—AAzc_—((kk_—TT((xxzz)))Q ’ *

where 7(X2) is the number of loci of subfunction 3 with respect to which xa is defined.
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Proof: For arbitrary individuals x3 € Ig(A1), each of the k alleles corresponding to the loci of subfunction
B is fixed. The remaining A; — & alleles have card (A) possible values each. For such individuals having
A defining loci in common with an individual x2 € I g(A2), r(x2) of the A, common loci are those of
subfunction §. The remaining A, — 7(X2) must be chosen from the other Ay — 7(x2) loci of x2. Of the
A1 — A defining loci of x; which are not shared by x2, k — 7(x2) are those of subfunction 3. The remaining
A1 — A¢ — (k — r(x2)) must be chosen from the £ — Ay — (k — 7(x2) non—subfunction g loci for which xz does

not contain genes, which completes the proof. |

The conditional moments of the fitness distribution for individuals Xg ~ U(Iﬁﬁ(/\z)), given that Xo
shares A, defining loci with an individual Xy ~ U(Ig(A1)). Because the number of individuals x;3 € Ig(A1)
such that A.(x1,x2) = A; (Equation 24) depends on X2, and in particular on its defining loci, the conditional
distribution is not in general uniform. The following theorem presents the conditional probability density

function for the class I_g.

Theorem 5.3.10 (Conditional distribution of individuals lacking building block)

Let & 2 St o I x Ir — R be a separable fitness function, and ¢ € Ip. Suppose X1 ~ U(Ig(A1)) and
Xa ~ U(I-5(A2)) are independent. Then the conditional density function of Xo given that A.(X1,Xa) = A,

8

FAN
fZ(XZ | Ac = )‘c) = f2,'r 5

where

X2 € R(r, A2) = {x € I g(A2) : x is defined w.r.t. exactly r of the loci of subfunction B} , (25)

for 2 NP (A, A, Ao, r) - card (w(Ar, Aoy X)) L, (26)
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the Nc(ﬂﬂ)()\l,)\z,)\c,r) ’s are defined by Equation 24, and card (w(A1, A2, Ac)) s given by Equation 22.

Proof: By the Law of Total Probability, the conditional probability that X2 = x2 given that A.(X1,X2) =

Ae is

fa(xz [Ac=Ac) = Pr[Xz=xz | Ac(X1,X2) = A]

> PrXy=x;AXa=x2| A=) .
xleIgi)\l

For Xy ~ U(I5(A1)) and Xa ~ U(I_p(A2)) independent, this may be written

f2(X2 | Ac = Ac)

Z PI‘[AC(Xl,Xz) = )\c | Xl = X3 A Xz = Xz] - PI‘[X]_ = X]_] . PI‘[XZ = Xz]
PI‘[AC(Xl,Xz) = /\c]

x3 €I5(A1)
[Na ()™ IN-p(A2)] 7 o, en) PrlAe(Xn, X2) = Ae | Xy =% A Xz = Xy
card (w(A1, Az, Ac)) - [Np(A)] =1 - [Vop(Ae)] 71 '

Because Pr[A.(X1,X2) = Ac | X1 =x3 A X2 =x2] = 1if Ac(x1,%2) = A, and 0 otherwise, this is just

fa(xz | Ae=Ae) = card(w(A, Az, A)) " NOP (A1, Az, A, 7(x32)) .

where we have used Lemma 5.3.9.

Because the conditional distribution of X3 is not uniform, the decomposition of the subfunction contributions

provided by Theorem 5.3.3 does not apply directly. The following theorem presents a decomposition which

does apply.

Theorem 5.3.11 (Conditional expectations of subfunction contributions) Let & = Db o I

X

Ir — R be a separable fitness function, and ¢ € Ip. Suppose X1 ~ U(Ig(A1)) and Xo ~ U(I5(A2))
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are independent. Then the conditional expectation of ¢;(Xa,c) given that A.(X1,X2) = A, is

S cnd(R(r, %)) - for - mil R(r, Da)sc) (27)

r=0

i-pr. (A2, €)

where the R(r, A2)’s are defined by Equation 25, the fa . ’s are defined by Equation 26, and the p;(R(r,A2),c)’s

are defined by Equation 13. Also, the conditional variance of ¢;(Xz,c) is

k
Jz'2|—\ﬁ/\c (A2,€) = Z card (R(r,A2)) - fo,r J?(R(Tv A2),¢) + {pi(R(r, A2), ) — /Lil_'/gAc()\27 C)}2 ,(28)

r=0

where the 02(R(r,\3),c)’s are defined by Equation 15.

Proof: By definition, the conditional expectation of the fitness contribution of subfunction ¢ is”

ne

E [pi(Xa,c) | Ac(X1,X2) = A Z ¢i(x2,¢) - Pr[Xao = x2 | Ao(Xy,X2) = A .

x2€1.5(A2)
Because {R(0,Az2),..., R(k,A2)} is a partition of I_5()2), this may be written as

k

£ [$i(Xa,0) | Ae(X1,Xa) =X = D Y ¢i(x2,0) Pr{Xa =x3 | Ao(X1,Xz) = A] .
r=0 x5 €ER(7,Az2)

By Theorem 5.3.10, the conditional probability density of Xz is constant over each R(r), so that

£ 19:(X20) | AX,Xa) = A = 3 Y dilx2.0) - for

r=0 x5 €R(r,A3)

~ 1
= Z .fZ,r Z ¢i(x2ac)
r=0 [ xg2 €ER(r,A2) J
k

= Z far - card (R(r, A2)) - i (R(7, A2),¢)

7See footnote 4.
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which completes the proof of the claimed conditional expectation. Similarly, the conditional variance of

$i(X2,c) is by definition®

Var [¢i(X2,c¢) | Ac(X1,X2) = A]

= ¥ { $i(x2,¢) — € [¢s(X2,¢)] } Pr[Xz = x2 | Ao(Xq,X2) = A
x€L.5(A2)
= ) [forcard (R(r, X2)) - € [{¢i(Xa,€) — pijopxr. (A2, )} | X2 € R(r, 0)]]

where we have again used the facts that the R(r,A2)’s form a partition of I_g(}A2) and that the conditional
density of Xz is constant over each R(r,Az). Upon simplification using Lemma 5.3.2, the result follows

immediately. [ |

The following corollary presents the central moments of the conditional fitness distribution of the class I_4.

Corollary 5.3.12 (Conditional fitness expectations of individuals lacking building block)

Let & 2 St o I x Ir — R be a separable fitness function, and ¢ € Ip. Suppose X1 ~ U(Ig(A1)) and

Xa ~ U(Ig(A2)). Then the conditional expectation of ®.(Xa) given that A (Xq1,X2) = A, is
E[Pe(X2) | Ae(X1,X2) = A = Zﬂuﬁﬁ,xc()\z&) ,
i=1

where the pi-g.x.(A2,€)’s are defined by Equation 27. Furthermore, the conditional variance of ®o(X2)

given that A(Xq1,X2) = A is

Var [Be(Xz2) | Ao(X1,X2) = Ad

= Z'U»ﬁ—.ﬁ)\c(/\%c) =+ 222 Cov [¢i(X2,C)7¢j(X2,C) I AC(X17X2) = Ac] )
i=1

1<j

where the 022|—'/@/\c()‘2’c) ’s are defined by Equation 28.

8Gee footnote B
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Proof: The results follow immediately from the linearity of the expected value operator and Theorem 4,

§4.9, of Hogg and Craig [41], respectively. |

5.4 Application of Tournament Selection Model

Under certain conditions, the model developed in Sections 5.1 and 5.2 enables exact determination of the
expected state following binary tournament selection. Specifically, for certain classes of binary tournament
selection algorithms (identified in Section 5.2), the model exactly predicts the probability that an individual
in population P(t) belongs to one of two classes. This section demonstrates the validity of the model. The
application chosen for the demonstration is the prediction of the fraction of individuals which contain a
particular building block in each generation of one selection episode of a fast messy genetic algorithm. The

experimental design is discussed in Section 5.4.1, and the results are presented in Section 5.4.2.

§.4.1 Ezperimental Design. The fraction of individuals containing a particular building block
in each generation is compared to the fraction predicted by the proposed model. The predicted mean and
variancc of the fitnesses of individuals containing the building block are also compared to the observed valucs,
and similarly for individuals lacking the building block. The fast messy genetic algorithm is executed® ten
times using different random seeds to facilitate statistically significant conclusions. Standard fast messy
genetic algorithm parameters are used, including no thresholding in the first episode. Other relevant!®

parameters are presented in the remainder of this section, which discusses the fitness function and modeling

assumptions used.

The fitness function for these experiments is that used by Goldberg et al. to demonstrate the feasibility

of the fast messy genetic algorithm [35]. This function, a “tightly-coded 50-bit order-5 fully deceptive trap

9The experiments are performed on one node of an Intel Paragon using AFIT’s fast messy genetic algorithm implementa-
tion [28], modified to collect statistics.

10Many of the fast messy genetic algorithm parameters have no impact on the experiments performed here. In particular,
because no thresholding is used, the shuffle size is of no consequence. Also irrelevant are the cut and splice probabilities, the
durations of the primordial and juxtapositional phases, and the filtering and thresholding parameters for other than the first
episode.
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function,” as well as the underlying 1fGA representation, is defined in the following in the notation of

Section 2.6.1 and Definition 4.1.2.

The individual space is defined over genic alphabet .4 = {0,1}, with nominal string length £ = 50 and

overflow factor o = 1.6, so that

80

I = JHo,13* x {1,...,50}")

A=0

and the set of fully specified individuals is

A . .
Ip =I(50)={((0,1,...,050),(11,...,150)) EIZZZZJ @Z:]} .

The overlay mapping is I' : I x Ir — A* as defined by Equation 3. For i € {1,...,10}, take £; =
{5i—4,...,5i}, corresponding to a “tight” coding, so that the projection mappings P, : {0,1}°® — {0,1}°

are

e

Peilar,. .. as0) (@si—45...,a5) .

For i € {1,...,10}, the (identical) decoding subfunctions are D; = D where D : {0,1}®> — R is the

“counting ones” function

D(ay,...,as5) = card({ € {1,...,5} 1 a; = 1}) .

Also for 7 € {1,...,10}, the (identical) objective subfunctions are f; = f where f : R — R is the “trap”

function

058(4—z) ,ifzx<4

1.00 Jifz >4
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Finally, the fitness function ® : I x Ir — R is

A 10
¢ = Z @
=1

where each ¢; = fioD; 0P, ol is a fitness subfunction. The competitive template for these experiments is
c=((0,...,0),(1,...,50)), as used by Goldberg et al. [35]. The initial population of the fast messy genetic

algorithm is drawn from a uniform distribution over I(£ — k), thus A = ¢/ 20 k=45

It is clear that ®. is an order-5 separable IfGA fitness function. Thus, the decompositions of the central
moments presented in Section 5.3 are applicable. The assumption of zero covariances throughout is somewhat
justified, because the condition A > k results in near-independence of the subfunction contributions. It is

then straightforward to obtain

pi(c,c) = 0.58 ,
p; (Ig(A),e) = 02471 ,fori#4 ,
o2 (Is(A\),c) = 0.0187 ,fori#f ,

pr(Ig(A),c) = 0.2441 forie {1,...,10} ,

and

o7 (I-g(A),c) = 0.0188 ,fori € {1,...,10} .

The values of p; (Ig(A),c) and p; (I-g(A),c) are unmistakably similar, as are those of o2 (Ig(}),¢)
and 02~ (I5()),c). This similarity is due to the previously mentioned near-independence of the subfunction

contributions.
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The mean and variance of the fitness distribution for individuals containing a particular building block
are thus 3.493 and 0.290, respectively. Similarly, the unconditional mean and variance for individuals lacking
the building block are 2.730 and 0.5662, which are essentially identical to the corresponding conditional values

(for all A, such that the conditional distribution exists).

In order to gain analytical tractability, the decision making model proposed in Section 5.1 neglects
the possibility of ties by assuming that the fitnesses of individuals are random variables of the continuous
type. For the fitness function employed in these experiments, this assumption does not hold. Thus, for
purposcs of the decision making model, the computational cxperiments reported here approximate the fitness

distributions by normal distributions with the means and variances just calculated.

The expressions given in Section 5.1 for the probabilities of correct decision making also assume that
the fitnesses of the ancestors of the competing individuals are mutually independent. This assumption holds
provided that the ancestors are distinct. In the absence of thresholding, each individual possesses a maximum
of 2¢ ancestors. Thus, if all of x;’s ancestors are distinct, and likewise those of Xz, then the probability in a
finite population of size N that a specific ancestor of x; is also an ancestor of x5 is 2N 1. Neglecting the
statistical dependence of a particular individual’s ancestors, the expected number of non-distinct ancestors is
therefore (2! N~1)2% = 4't N1, That is, less than one common ancestor is expected provided that ¢ < log, N,
which is one half of the “takeover time.” These experiments use a population size of N = 1786. On the
basis of the preceding argument, it is rcasonable to cxpect the probabilitics of correct decision making to be

accurate through generation 5 < log, 1786 = 5.4.

Finally, after the first iteration of selection, closed form solutions for the probabilities of correct decision

making do not exist. Consequently, these values are obtained numerically (see Appendix B).

5.4.2  Ezperimental Results. The predicted and observed fraction of individuals containing the
building block in each generation is shown in Figure 24. The predicted state is accurate through the third
generation, after which it becomes overly “optimistic.” That is, it predicts a greater fraction of individuals

containing the building block than is obscrved. The source of this over-optimism may be cxplained by
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Figure 24. Predicted vs. Observed fmGA State

comparing the predicted and observed fitness distribution moments. The predicted and observed mean
fitnesses for individuals containing the building block are shown in Figure 25. Again, the prediction is
initially accurate, but after the fourth gencration, it underestimates the actual mean. The inaccuracy in
this prediction begins in a later generation than the inaccuracy in the state prediction. Thus, the former
is an effect of, rather than a cause of, the latter inaccuracy. The mean fitness of individuals lacking the
building block is shown in Figure 26. The results are qualitatively similar to those for individuals containing
the building block. The predicted fitness standard deviations are compared in Figure 27 to their observed
counterparts for individuals containing the building block. Although not as accurate as the prediction of the
distribution means, the prediction for this statistic is well within the range of observed values. One notable
difference between this result and those for the distribution means is the inaccuracy in the prediction for
the initial population. This is attributable to the fact that the prediction neglects the covariances of the
subfunction contributions, which although small, can easily be seen to be negative. The same remark applies

to the predicted standard deviation of the fitnesses of those individuals lacking the building block, which is
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Figure 25. Predicted vs. Observed Mean Fitness with Building Block

shown in Figure 28 together with the observed values. This is by far the least accurate of the predictions
considered here, and the inaccuracy begins in an earlier generation than that of the state or the distribution
mean predictions. It is reasonable to conclude that it is the source of much of the inaccuracy in the other

predictions.

5.5 Summary

This chapter develops a dynamical systems model of binary tournament selection with probabilistic
thresholding. The key components of the model are an order-statistics based decision making model and
a hierarchical Markov chain model (see Figure 29). Together with the probabilistic building block filtering
model developed in Chapter IV, the model allows prediction of expected effectiveness resulting from a choice
of exogenous parameters. The prediction of expected effectiveness serves as the basis for the parameter

selection techniques proposed in Chapter VI.
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Figure 26. Predicted vs. Observed Mean Fitness without Building Block
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Figure 27. Predicted vs. Observed Standard Deviation of Fitness with Building Block
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Figure 28. Predicted vs. Observed Standard Deviation of Fitness without Building Block
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Figure 29. Flow of Information in Dynamical Systems Model of Binary Tournament Selection with Prob-
abilistic Thresholding
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VI. Selection of Exogenous Parameters

The fast messy genetic algorithm (fmGA) described in Section 2.6.4 is employed as an optimum seeking
technique in several limited studies [27, 28, 35, 54]. These studies and this research show theoretically and
empirically that the fmGA exhibits a number of advantages over the simple genetic algorithm (Section 2.4),

the messy genetic algorithm (Section 2.6.3), and other optimum seeking techniques.

Practical use of the fmGA is limited by the lack of an acceptable methodology for selection of its
numerous exogenous parameters, upon which its effectiveness depends. In particular, experience [28] shows
that the cffectivencss of the algorithm depends strongly on the filtering and thresholding parameters. Ex-
isting parameter selection techniques (see Section 2.6.5) are essentially heuristic and do not reliably yield
satisfactory effectiveness in practical applications. Furthermore, they do not predict the expected effective-
ness of the algorithm resulting from a given set of parameters, nor whether improved effectiveness may result

from “tweaking” the parameters.

This chapter addresses the exogenous parameter selection problem for both the fmGA and the gen-
eralized fast messy genetic algorithm (gfmGA) described in Chapter III. The parameter selection problem
is formally posed as an optimization problem (Section 6.1), for which the cost function is related to the
expected effectiveness resulting from a particular choice of exogenous parameter settings. The definition of
the cost function involves the mathematical models of probabilistic building block filtering (BBF) and binary

tournament selection (BTS) with probabilistic thresholding developed in Chapters IV and V, respectively.

Because the fmGA filtering and thresholding parameters are discrete, the resulting optimization prob-
lem is combinatoric. A hill-climbing-based finGA parameter selection technique is proposed in Section 6.2.
In contrast, the gfmGA parameters are real-valued. Section 6.3 discusses the use of vector space optimiza-
tion techniques to obtain a set of necessary optimality conditions (NOCs) for the parameters of the gfmGA.
Parameter selection techniques for the gfmGA are proposed based on numerical solution of the NOCs and

computational optimization of the cost functional.
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6.1 Formal Statement of the Parameter Selection Problem

The formal statement of the linkage-friendly genetic algorithm (IfGA) exogenous parameter selection

problem as an optimization problem is based on the models of probabilistic BBF and BTS with probabilistic

thresholding presented in Chapters IV and V, respectively. In particular, the cost functional is defined as

an error between the expected final state and the ideal final state @, where the expected state is defined in

terms of the population vector. The population vector is of the form

Pio

P20

ne

Pmo

P11 ... Pus
P21 ... Pz
Pmi ... Pm¢

Each component p;; is of the form of Equation 12, where A is the class of individuals containing building

block 1. The p;;’s are viewed as conditional probabilities that an individual randomly drawn from the

population contains building block ¢ given that it is of length j.

The matrix u(x,t) is defined such that the ¢, jth component

wii(x,t) = P67 | 07 )pyl

is the probability that an individual randomly sampled from population P(¢) contains building block ¢ and

is of length 7, given the exogenous parameter set x. The ezpected state in generation t is the vector

J,(x,1)

the ¢th component of which is the probability that an individual randomly sampled from population P(¢)

contains building block ¢, given the exogenous parameter set x.
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The exogenous parameters (excluding the 9/(0; ¢, k)’s and 6(0; 7, j; k, t’s) for iteration k of the generalized
fast messy genetic algorithm are taken from the vector space X £ R&%tp x REX(EH) X (E+1) X1y They are subject

to the inequality constraints given in Equations 6 and 7, which are represented formally by

where G : X — Z.

The cxogenous paramctcer sclection problem may thus be formally stated as:

Find the set of exogenous parameters x € X which minimize the

cost functional J : X — R,

subject to G(x) < 0z.

6.2 fmGA Parameter Selection

This section proposes an exogenous parameter selection technique for the fast messy genetic algorithm
which bears some resemblance to the technique proposed by Kargupta. The most significant advantage
of this technique over Kargupta’s is that the choice of thresholding parameters explicitly considers the
expected effectiveness of the algorithm. Also, as a consequence of the underlying tournament selection
model (Chapter V), this choice reflects the dynamic nature of the probability of correct decision making.
Another advantage is that all of the design parameters required by the technique (the nominal string length
{, the estimated level of deception %, and the assumed initial fitness distributions) are already required by

the fast messy genetic algorithm.

Luenberger presents numcerous mathematical techniques for the optimizatioon of functionals defined

on vector spaces or subsets of vector spaces satisfying specific conditions [50]. The remainder of this section
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considers their use in the fmGA parameter selection problem, and shows that they are not, in general,

directly applicable.

Both the pre-Hilbert space form and the classical form of the Projection Theorem require that the set
over which optimization is performed be a vector space. The same is true of the techniques presented for
solution of minimum norm problems. When £ + 1 is not prime, no operations ¢ and ® exist such that B
together with @ and ® form a vector space. Thus, the projection theorems and the minimum norm problem

techniques arc not, in gencral, directly applicable.

The Fenchel Duality Theorem and the Lagrange Multiplier theorems for global theory require that the
set over which optimization is performed be a convex subset of a vector space. Again, unless £+ 1 is prime,
B does not satisfy this condition, so these theorems are also not, in general, directly applicable.

The Lagrange Multiplier theorem for local theory requires that the functional to be optimized be
Fréchet-differentiable, which implies that the set on which it is defined is a vector space. Likewise, the

Generalized Kuhn-Tucker Theorem requires that the functional to be optimized be defined on a vector

space. Thus, these theorems are also not, in general, directly applicable.

The proposed technique is as shown in Figure 30. A possible disadvantage of this technique is the

1. Take X% =¢ — k. Set e = 0.

2. For each candidate threshold § € {2A(9) —¢,...,A(®} find { which minimizes
J.

3. Take 8(® to be the § which yields the overall minimum J. Take ¢] to be the
corresponding £.

4. Take

AetD — min {)\ ! g1 MIN 2t > 1}
t g0

5. Set e = e+ 1. If A(®) > k goto step 2.

Figure 30. Fast Messy Genetic Algorithm Parameter Selection Technique

computationally intensive nature of the second step, in which the optimal selection episode duration and

associated effectiveness are determined for each meaningful choice of the threshold parameter. For “difficult”
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optimization problems, multiple independent runs of the fast messy genetic algorithm are necessary, and it is
appropriate to “amortize” the computational cost of parameter selection over the number of runs performed.
Also, the same (or better) overall effectiveness may result from a smaller number of runs of a more effective
algorithm as from a larger number of runs of a less effective algorithm. Thus, for “difficult” optimization

problems, the computational cost of the second step is justified.

The technique may be viewed as a hillclimbing strategy, in the sense that each instance of the third
step specifics a locally optimal choice of the threshold paramecter and sclection cpisode duration. Kargupta’s
technique may also be viewed as a hillclimbing stratcegy, with a diffcrent criterion for local optimality which

does not consider expected effectiveness.

The choice of filtering parameters in the fourth step is motivated by the stated design objective of
Goldberg, et al. [35] and Kargupta [47]. That is, it ensures that after filtering each building block is expected
to have at least one copy in the population. Importantly, the choice is made based on the expected number
of copics of the lcast well represented building block, and the modcl docs not assume that the number of

copies of that building block doubles in each generation of tournament selection.

6.8 gfmGA Parameter Selection

The filtering and thresholding parameters of the gfmGA are real-valued. Furthermore, the cost func-
tion defined in Section 6.1 is continuously differentiable with respect to the parameters. Consequently, vector
space optimization techniques [50] may be used to obtain necessary optimality conditions (NOCs) for the
parameter selection problem. This section discusses the application of the Generalized Kuhn-Tucker The-
orem to obtain NOCs, and discusses parameter selection techniques for the gfmGA. Luenberger states the

Generalized Kuhn-Tucker Theorem essentially as follows:
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Theorem 6.3.1 (Generalized Kuhn-Tucker) Let X be a vector space and Z o normed space having

positive cone P. Assume that P contains an interior point. Let f be a Gateauz differentiable! real-valued
functional on X and G o Gateaur differentiable mapping from X into Z. Assume that the Gateauz differen-
tials are linear in their increments. Suppose xzy minimizes [ subject to G(z) < 0z and that x¢ is o regular

point of the inequality G(x) < 0z. Then there is a 2§ € Z*, z > 0z~ such that the Lagrangian

f(z) +(G(x), 2))

is stationary at xo; furthermore, {G(zg),z5) = 0.
Proof: See Luenberger [50]. |

As an immediate consequence of this theorem, a set of necessary optimality conditions for the exogenous

parameter selection problem is obtained.

Corollary 6.3.2 Let the cost function J and the constraint mapping G be as defined in Section 6.1. Suppose

Xo minimizes J subject to G(x) < 0z. Then there exist zy, € R™, z, € R, z,, > Opm, 2z, > O such that

Zm 2 OR'” ) (29)
Zn 2 Opn (30)
J:c(xﬂ) + zr—rrLGAac(xO) - z';Lr = OR" ’ (31)
and
Z;é(XO) = ZIXO =0 (32)

IThe Gateaux differential is the generalization to arbitrary vector spaces of the directional differential. Following Luen-
berger [50], let X be a vector space, Y a normed space, D C X, T:D — Y,z € D, and h € X. If the limit

§T(x:h) 2 lim é[T(a: + ah) — T(z)]

exists, it is called the Gateaux differential of T at x with increment h. If the limit exists for each h € X, the transformation T
is said to be Gateaux differentiable at x.
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Proof: The constraint space Z = R™'" is a Buclidean vector space, hence the positive cone P is the
first orthant. P contains interior points, e.g. (1,...,1). The transition operators 7, and 75 defined in
Chapters IV and V, respectively, are both differentiable with respect to each of the filtering and thresholding
parameters. Consequently, the mapping J,, defined in Section 6.1 is also differentiable with respect to the
parameters, and furthermore, so is J. The constraint mapping G is also differentiable with respect to the
parameters, and every point satisfying G(x) < 0z also is a regular point of the inequality (i.e. there are no

cusps in the constraint boundaries). Thus, the conditions of Theorem 6.3.1 are satisfied.

Up to isomorphism, J : R® — R and G : R® — R™"". Suppose 2y € R™ minimizes J subject to
G(z0) < Opm+n. Then x4 is a regular point of G(z) < Ogm+~, and (following Luenberger [50:Ex. 2, §9.4])

the constraint may be written

G(zo) < Opm (33)

and

— X0 S OR" ) (34)

where G : R — R™.

Theorem 6.3.1 implies that there exist z,, € R™ and z, € R™ such that

Zm Z OR'" ) (35)
Zn = Ope s (36)
J(z)+ z;é(m) + Zl(_m) is stationary at zq , (37)
and
2mG(z0) + 2, (=20) =0 . (38)

Condition 37 may be written

Jx(xo) + zléw(mo) - zZ =0
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Conditions 33 and 35 imply that z;',;C;'(mg) < 0, while Conditions 34 and 36 imply that —zz¢ < 0. These

conditions, together with Condition 38 imply that zlé(wo) = 2/ 29 = 0, which completes the proof. |

Equations 29 through 32, which form a system of simultancous non-lincar cquations in the cxogenous
parameters, are referred to as the necessary optimality conditions (NOCs). Because the cost functional J is
continuous on the feasible region, which is a compact subset of a metric space, J attains its minimum on the
region (see Theorem 4.28 of Apostol [3]), i.e. there exists an X¢ which minimizes J subject to G(x) < 0z.
The paramecter sct xg yiclds optimal cxpected effectivencss of the generalized fast messy genctic algorithm.

In principle, the exogenous paramcter sclection problem reduces to the problem of finding xg.

By the preceding argument, the existence of at least one solution xg¢ of the NOCs is guaranteed.
Under certain conditions, the solution is unique, in which case Equations 29 through 32 are both necessary

2 of J is positive definite on the entire

and sufficient for optimality. In particular, if the Hessian matrix
feasible region, then there exists a unique minimum of J on the region, and hence xg is unique. Becausc the

constraints G(x) < Oz define a convex region of the parameter space, Xg is also unique in the more general

case that J is couvex on the region. Finally, xo may be unique even if .J is not convex.

Analysis of the positive definiteness of the Hessian matrix of J via explicit derivation of the partial
derivatives is tedious and unrewarding, as is explicit analysis of the convexity of J. The question of the
uniqueness of Xg may be addressed more directly. Because J, is well approximated by a high-order polynomial
in the cxogenous parameters, the roots of which depend on the objective function, it scems likely that there
exist (many) objective functions for which the stationary points of J include points of local maximum, saddle
points, and multiple points of local minimum. For generality, it is assumed in the sequel that the solution

of the NOCs is not unique.

2Let f: R®™ — R and p € R™. Then the matrix A whose components are

A OPf(x)

ij —
3:171'(9&7]' »

is the Hessian matriz of f at p[64]
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In principle, the parameter selection problem reduces to the problem of finding the solution xg of the
NOCs for which J is minimized. In practice, the explicit form of the resulting expressions does not suggest
a direct solution technique, despite extensive analysis and consultation. Thus, solutions must be obtained
numerically. Standard techniques for simultaneous solution of non-linear equations include Newton-Raphson,

globally convergent extensions thereof, and Broyden’s Method [64].

Newton-Raphson is perhaps the simplest and best known multidimensional root finding technique.
Given a “good” initial guess of the location of a root, it converges quadratically to the root. For a system

of equations of the form F(x) = 0 with Jacobian matrix J, the update rule is

Xnew = Xold +6x 5

where 6x satisfies

J.6x=-F .

Given a “poor” initial guess, Newton-Raphson fails to converge. Variations of the algorithm overcome this
significant limitation by requiring that each step reduce f E %|F|2 This is possible because each step is in a
descent direction for f. Thus, either the full step decreases f, or a smaller step in the same direction can be
found which decreases f. Both Newton-Raphson and its globally convergent extensious require the existence

of the Jacobian matrix. This condition is satisfied by the NOCs, so that these techniques are applicable.

Even though the Jacobian matrix exists and its analytical form is available, its evaluation is compu-
tationally intensive. Consequently, multidimensional secant methods, such as Broyden’s method, may be
more efficient than Newton-Raphson. A thorough discussion of this technique, as well as a reference to the

primary literature, may be found in Press, et al. [64].

The exogenous parameter selection problem for generalized fast messy genetic algorithms may be

approached by identifying solutions to the NOCs and selecting the solution for which the cost functional J
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is minimized. A parameter selection technique for generalized fast messy genetic algorithms may be stated

as shown in Figure 31. This technique satisfies the formal acceptability criteria established in Chapter I.

1. Let xg be the best currently known set of exogenous parameters for the fast
messy genetic algorithm.

A7 1 1

2. While the termination condition is not satisfied:

(a) Obtain a solution x of the NOCs.
(b) If J(x) < J(xo) then replace x¢ by x.

Figure 31. Generalized Fast Messy Geunetic Algorithim Parameter Selection Technique Based on Solution
of the Necessary Optimality Conditions

The criteria are:

1. the technique guarantees expected effectiveness no worse than that resulting from the best set of

parameters obtained using existing techniques,
2. the technique requires no a priori knowledge of the optimal solution,

3. the technique requires no design parameters beyond those of the linkage-friendly genetic algorithm;

and

4. the computational cffort required by the technique scales well with the cffort required by the linkage-

friendly genetic algorithm.

The technique is essentially a simplistic search algorithm. It generates candidates from the set of
solutions of the NOCs, which includes the local maxima and saddle points of J, as well as the local minima.
The amount of computation required to obtain a solution to the NOCs is approximately that required to
obtain a local minimum of the cost function J. Thus, the technique is likely to be less efficient than one

which randomly generates candidates from the set of local minima (see Figure 32).

Even more promising strategies result from the use of standard constrained optimum seeking techniques
to minimize J. The literature abounds with applicable techniques, including simulated annealing, tabu

search, and evolutionary algorithms. Because the cost function is continuously differentiable, it is worthwhile
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1. Let xp be the best currently known set of exogenous parameters for the fast
messy genetic algorithm.

2. While the termination condition is not satisfied:

(a) Obtain a point of local minimum x for J.

(b) If J(x) < J(xo) then replace x¢ by x.

Figure 32. Generalized Fast Messy Genetic Algorithm Parameter Selection Technique Based on Optimiza-
tion of the Cost Function

to consider hybrid techniques which combine a globally convergent technique (e.g. genetic algorithms) with
an efficient local optimization technique (e.g. conjugate gradient). Such hybrids serve as effective optimum

seeking techniques for other objective functions with similar properties [55, 56].

6.4 Summary

The linkage-friendly genetic algorithm exogenous parameter selection problem is formally posed as a
constrained optimization problem. By viewing the fast messy genctic algorithms paramecter sclection problem
in this way, a hillclimbing tcchnique is obtaincd which represents a substantial improvement over cxisting
techniques. The Generalized Kuhn-Tucker Theorem is employed to obtain necessary optimality conditions
(NOCs) for the generalized fast messy genetic algorithm parameter selection problem. Several techniques
are suggested by which the problem may be solved in practice, including numerical solution of the NOCs

and a hybrid genctic algorithm which incorporates cfficient local optimization.
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VII. Conclusions and Recommendations

The primary objectives of this research are to

¢ mathematically model those properties of specific linkage-friendly genetic algorithms which are related

to expected effectiveness; and

e dcvclop cxogenous paramcter sclection techniques for those linkage-friendly gencetic algorithms, focusing

on maximizing their expected effectiveness.

The major conclusions are summarized in Section 7.1, and recommendations for future research are

presented in Section 7.2

7.1 Conclusions

Formal frammework for evolutionary algorithms. Evolutionary algorithms are a class of stochastic
population-based algorithms which are commonly applied as optimum seeking techniques. A novel framework
for evolutionary algorithms is proposed which extends the work of Bick and Schwefel (Section 2.3). Within
this formal framework, evolutionary operators are viewed as mappings from parameter spaces to random
population transformations. Definitions of recombination, mutation, and selection operators are proposed

which capturc their distinguishing charactceristics.

Linkage-friendly genetic algorithms (IfGAs). The class of IfGAs consists of evolutionary algo-
rithms which use order-invariant representation schemes and strictly invariant selection operators. Previously
studied examples of the class include the messy genetic algorithm (mGA) and the fast messy genetic algo-
rithm (fmGA), which are defined within the formal framework for evolutionary algorithms in Sections 2.6.3

and 2.6.4, respectively.

The mGA and fmGA represent theoretical steps towards effective linkage-friendly genetic algorithms.
However, the mGA is O([card (A) - £]*) in time and space, where A is the genic alphabet, £ is the problem

size, and k is the building block size. The fmGA addresses this drawback, but it also introduces numerous
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exogenous parameters for which no practical selection methodology is known. Experience shows that the

effectiveness of the fmGA is highly sensitive to the choice of these exogenous parameters [28].

Chapter III proposes a novel IfGA, the generalized fast messy genetic algorithm (gfmGA), which uses
probabilistic generalizations of the filtering (mutation) and selection operators used by the fmGA. The fmGA
is a special case of the gfmGA. Consequently, existence is guaranteed of parameters for which the gfmGA

expected effectiveness is no worse than the best possible fmGA expected effectiveness (Section 3.3).

Dynamical systems models of probabilistic operators. The practical application of the fmGA is
limitcd by the lack of an acceptable paramecter sclection methodology. Existing tcchniques are handicapped
by a poor understanding of the relationship between the filtering and thresholding parameters of the algo-
rithm and the expected effectiveness. This research develops a dynamical systems model of the gfmGA (and
of the fmGA as a special case) which predicts the expected effectiveness as a function of the filtering and

thresholding paramcters. The key clements of the model are:

1. Probability of building block presence after probabilistic filtering. Previous models of build-
ing block filtering considered only deterministic and destructive filtering. This research (Chapter IV)
extends these models to consider probabilistic and possibly increasing individual lengths. Probabilities
of survival and construction are combined to yield the total probability of building block presence

following filtering.

2. Order statistical analysis of the probability of correct decision making. Early linkage-friendly
genetic algorithm studies aim at improving probabilities of correct decision making (whether or not this
is explicitly stated), but those probabilities are inadequately modeled. Previous models of tournament
selection focus on either takeover time or selection intensity. Neither model provides information
regarding the relative growth of one class of individuals with respect to another (except the growth of
the “best” individuals with respect to the “worst” individuals). This research develops the probability

of correct decision making exactly and explicitly in terms of the initial fitness distributions of the
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competing classes and the number of ancestors belonging to each of the classes for each competitor

(Section 5.1).

3. Markov chain analysis of competition in the presence of non-trivial thresholding. Another
limitation of previous tournament selection models is that they neglect thresholding. By affecting
the pairs of individuals which are considered compatible, thresholding affects not only the effective
probability of correct decision making, but also the effective selective pressure. This research uses
Markov chain analysis to develop an cxact dynamical systems modcl of competing classes of individuals

under binary tournament selection with (probabilistic) thresholding (Section 5.2).

Parameter selection techniques based on maximizing expected effectiveness. The math-
ematical model developed permits the design of parameter selection techniques which explicitly consider
the expected effectiveness of the algorithm. This research considers a parameter selection technique to be

acceptable if it satisfics the following critcria:

1. the technique guarantces cxpected cffectivencss no worse than that resulting from the best sct of

parameters obtained using existing techniques,
2. the technique requires no a priori knowledge of the optimal solution,

3. the technique requires no design parameters beyond those of the linkage-friendly genetic algorithm;

and

4. the computational effort required by the technique scales well with the effort required by the linkage-

friendly genctic algorithm.

The parameter selection problem is formally posed as a constrained optimization problem (Section 6.1).
An fmGA parameter selection technique based on hill-climbing is proposed which satisfies the acceptability
criteria (Section 6.2). In part because the gfmGA parameters are real-valued, vector space optimization
techniques (specifically, the Generalized Kuhn-Tucker Theorem) may be used to obtain formal necessary

optimality conditions (NOCs) for the gfmGA parameters (Section 6.3). One gfmGA parameter selection
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technique is proposed which is based on numerical solution of the NOCs. A second technique is proposed

based on computational optimization of the cost functional.

7.2 Recommendations

This research answers a number of questions regarding the properties of linkage-friendly genetic algo-

rithms. It also suggests a number of promising areas for additional research:

1. Fitness distributions after building block filtering. The building block filtering model developed
in Chapter IV considers only the probability of building block presence after filtering. It provides no
information regarding the resulting fitness distributions. The availability of such information would
provide the initial fitness distributions required to model the tournament selection episode following

the filtering event.

2. Non-monotonicity of the probability of correct decision making. The use of thresholding in
binary tournament selection is predicated on the assumption that the probability pg of correct decision
making dcpends on the thresholding metric. In particular, the messy genctic algorithm and fast mcessy
genetic algorithm implicitly assume that pgy is a non-decreasing function of the number of common
defining loci. Limited empirical results (not reported here) based on the tournament selection model
developed in Chapter V suggest that this assumption is incorrect. These results suggest that better
decision making may result from a compatibility criteria which places both upper and lower bounds

on the number of common defining loci.

3. Extension of tournament selection model to competition between N classes. The math-
ematical model of tournament selection developed in this research (Sections 5.1 and 5.2) focuses on
competition between two classes of individuals. It is natural to extend the model to competition be-
tween N classes of individuals. Such an extension would, for example, facilitate more accurate modeling

of the cffects of the prescnce of individuals which contain multiple building blocks.
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4. Efficiency considerations of parameter selection. This research considered only effectiveness
in the definition of algorithm performance. Another important aspect of performance is efficiency.
Future research should examine the appropriate definition of an efficiency functional, and the appro-
priate means by which to consider both effectiveness and efficiency in selecting exogenous parameters.
Performance may be defined as a convex combination of effectiveness and efficiency. Alternatively, the

parameter selection problem may be viewed as a multi-objective optimization problem.

5. Application of the gfinGA to practical problems. Future research also includes application
of the gfmGA to real world problems, such as the polypeptide structure prediction problem. The
AFIT/WL Genetic Computation Techniques (AGCT) research group performs a number of state-of-
the-art investigations in the application of evolutionary algorithms to this problem (e.g. [54]). Several

issues must be addressed.

e The inherently discrete nature of gfmGA individual spaces strongly suggests that reasonable ef-
fectiveness may be expected only for objective functions with a combinatoric character. The
polypeptide structure prediction problem exhibits both combinatoric and continuous character-
istics, which suggests hybridization of the gfmGA with efficient local minimization techniques

(c.f. [56]).

¢ The computational resources necessary to solve a real-world polypeptide structure prediction
problem require the use of high-performance scalable architectures. Existing mappings of the
fmGA to such architectures (e.g. [28]) provide a reasonable point of departure for determining
appropriate mappings of the gfmGA. Appropriate mappings of the parameter selection techniques

to scalable architectures are also required.

e The prediction of expected effectiveness, and consequently the selection of gfmGA parameters,
requires estimation of the initial fitness distributions. This estimate may be obtained by as-
sumptions based on physical insight (e.g. distributional form, signal difference), and parameter

estimates based on a uniform sampling of conformation space (e.g. mean, variance).
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Appendiz A. Cardinalities for Decision Making Model

The distributions of fitnesses in a uniform random population developed in Section 5.3 are expressed in

terms of certain cardinalities of subsets of I and I?, where I is the individual space. This appendix presents

expressions for these cardinalities. | A] denotes the cardinality of A.
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Appendiz B. Numerical Techniques Used in Tournament Selection Experiments

The computational experiments reported in Chapter V assume that the unconditional fitness densities
f and g and thc conditional fitness densitics fo and gg of the competing classcs arc thosc of the normal
distributions N(pa,0%), N(up,0%), N(pan, Jim) and N(ppjq, J%lg), respectively. Consequently, the
probabilities of correct decision making for individuals with more than one ancestor do not have closed form

solutions. This appendix discusses the numerical techniques used to compute the probabilities.

The integral

I 2 /_oo fQ(t)[F(t)]"()?)—l[G(t)]"(;)/ gQ(S)[F(S)]"(;)[G(s)]"(Yb)_l s di

—0

may be formally expressed as
i (@)_ @
I = [ fa@r@rs emrs ni-s.d

where

Bitnts) 2 [ w@POIY GO s

Because the integral operator is additive with respect to the interval of integration,

N
Il(—OO,.’,E) = I](—OO,(Z())-FZI]_((LZ'f]_,(Zi)+Il(G/N,$) .

i=1

Each of the integrals is evaluated numerically, using Romberg integration [64]. The first integral is improper,

and is cvaluated via the change of variable
2
o[ (22
oB|QV 2w 2 oBIQ ’
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which yields
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o t

for @ > ppjg- The a;’s are chosen from {pa—0a,pa+0oa,pB— 0B, ip + OB, B2 — OBlQsEBla T JB|Q}
to satisfy —oo < ap < -+ < ay < z. The integral I is then evaluated using Gaussian quadrature [64] via

Gauss-Hermite polynomials.

The integral

1 A o (D) S
v 2 [ _s@PErt G i
may be expressed as
1 N
W = I1(—oo,a0)+Z[1(ai_1,ai)+[1(a1v,oo) 9
i=1

and each integral is evaluated using Romberg integration, with the a;’s chosen as above. The first and last

integrals are both improper, and are evaluated using the above change of variable technique. Finally, the
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integral

= [ R@F@PE G @

may be expressed as
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and each integral is evaluated using Romberg integration, with the a;’s chosen from {pigs — 04, ppa+0a, up —
OB, B + OB, fhaj — TajQ,bajn + UA'Q} to satisfy —0o < ap < -+ < ay < z. Again, The first and last

integrals are both improper, and are evaluated via the change of variable
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