
Design and Implementation of a Minuscule General Purpose Processor in an
Undergraduate Computer Architecture Course

Archana Chidanandan J.P. Mellor Laurence D. Merkle
Rose-Hulman Institute of Technology

Terre Haute, Indiana 47803

Abstract

This paper describes a project for an introductory com-
puter architecture class. The project involves designing and
implementing a “miniscule” processor that can run pro-
grams within certain boundaries. In this paper, we describe
the goals of the project, the process, and the challenges
faced by students in successfully completing the project.

1. Introduction

At our school, computer architecture concepts are taught
over two 10-week terms, with 40 contact hours per term.
The first course covers assembly language programming
and basic computer architecture principles. The second
course covers advanced topics such as pipelining, caching,
scheduling, etc. In this paper, we will describe the term-
long project that the students in the first course must com-
plete in order to pass the class.

2. Project description and goals

The project requires the students to design a “minus-
cule” instruction set general purpose processor that can ex-
ecute programs stored in an external memory. Students
also model their design using electronic design automation
(EDA) software, test it through simulation, assess its per-
formance, synthesize it, and implement it on a Field Pro-
grammable Gate Array (FPGA) microchip. The goals of
the project are that students should be able to:

a. Apply the principle of abstraction in analysis and de-
sign problems.

b. Specify, design, test, and document instruction set ar-
chitectures and their hardware implementations, taking into
consideration key computer organization design principles.

c. Work effectively as members of a team.
The project is typically assigned over a 10-week period

and passing the project is a requirement for passing the

course. Students work in teams of three to four.
Students are provided with a sample high-level language

program that their architecture must be able to run. Stu-
dents must convert the program to their assembly language
and subsequently their machine language. The program re-
quires some arithmetic and logical operations, conditional
statements, loops, and implementing and invoking a re-
cursive procedure. In addition, the inputs are obtained
through interrupt-driven I/O and students must implement
some simple interrupt-service routines. Students are en-
couraged to write at least one other program to test their
architecture.

3 Integration of the project into the course

In order to enforce the use of abstraction in the design
process, similar to the approach in the text[1] students be-
gin by designing an instruction set architecture(ISA), fol-
lowed by the design of the hardware and its organization to
implement the ISA.

Milestone 1: In the first milestone, the team is required
to design their own unique ISA, i.e. the assembly language
and machine language specification. A requirement is that
the instructions cannot be all 32-bit in length. At this point,
the students have been exposed to the MIPS architecture’s
assembly and machine language and basic ISA design prin-
ciples. Teams are encouraged to explore variable-length in-
structions, stack-architectures etc.

Milestone 2: In the milestone, teams must describe an
implementation of their ISA using Register Transfer Lan-
guage (RTL). In class, students would have seen the RTL
specifications for the single-cycle and multi-cycle imple-
mentation of a subset of the MIPS ISA. Teams are typically
encouraged to design a multi-cycle implementation as this
will allow them to explore the complexity in design of the
control unit.

Milestone 3: At this stage, teams must design the data-
path for their architecture. They must complete the com-
ponent list and correctly identify all the control signals that

2007 IEEE International Conference on Microelectronic Systems Education (MSE'07)
0-7695-2849-X/07 $20.00 © 2007

are required to implement the datapath. Teams are also en-
couraged to start implementing and testing the components.
They must also devise a plan to integrate the components to
eventually implement the datapath.

Milestone 4: Now that all the control signals have been
identified, the teams must design the control unit. They
can either use a FSM or a micro-programmed control unit.
Again, students would have been introduced to control unit
design principles in class.

Milestone 5: In this final stage, students must complete
the implementation of the datapath, include the control unit
and also integrate the provided memory into the implemen-
tation. They must test the implementation and when possi-
ble, students are encouraged to implement the design on an
FPGA.

Deliverables: For each milestone, students write a de-
sign report that summarizes their design choices and pro-
vides the details of their design. They also maintain and
submit a design journal that explains their design choices
at each stage. Students will also eventually turn in the im-
plementation files. They will write a summary report that
describes their design process, lessons learned, and the per-
formance characteristics of their architecture. In lieu of a
final exam, students present their architecture to their peers
and evaluate each other’s designs.

4. Tools Used

In the initial offerings of the course, LogicWorks[2] was
used to implement the project using the schematic entry
tool. Since then, Xilinx ISE foundatiion[3], ModelSim, Ca-
dence NC-Sim[4], and SimView have been introduced. The
use of HDL such as Verilog is also encouraged.

5. Challenges

The course is a required for Computer Science, Com-
puter Engineering, and Software Engineering students. The
pre-requisites for the course are a course in logic design and
basic programming concepts. While these requirements are
sufficient for students to understand the concepts, they do
not always meet the requirements to complete the project
implementation. Until last year, students had not been ex-
posed to most of the CAD tools. This required that about
10 hours of class time be devoted to getting students com-
fortable with the tools and HDL such as Verilog. In the past
year, the pre-requisite logic design course has switched to
using Cadence and SimView.

Another challenge is the sheer scale of the implementa-
tion. Students have had little experience with the implemen-
tation of such a large project. They did not have sufficient
experience to understand the need for incremental imple-
mentation and testing. This has often resulted in a variety

of problems during the implementation which the students
are unable to solve soon enough and hence resulting in in-
complete implementations.

A third challenge lies in the ISA design stage. Since stu-
dents would have been exposed mainly to the MIPS archi-
tecture, it was difficult to wean them from it and have them
come up with unique architectures.

The last two items listed above have been addressed to
some extent as a result of the changes in the logic design
course. Because, we no longer have to spend as many hours
on teaching the students the tools, we are able to use that
time to teach students about at least one other architectural
style in some detail. In the current offering of the course,
students initially see a stack-based architecture. They are
also given a partial implementation of the architecture and
are then required to complete the implementation. The
“mini-project” gives students some experience with work-
ing with a large-scale implementation before they imple-
ment their own architecture from scratch.

6. Conclusion

The project gives the students a hands-on experience
with processor design. Students typically enjoy the project
and have commented on how much they learn. We have typ-
ically achieved around a 50% success rate in the implemen-
tation phase. We do not view this as necessarily a failure
in the project itself, as implementation is just one phase of
the project. We are consistently surprised by the ISAs that
students design and by the risks they are willing to take in
their design which sometimes work out well and sometimes
don’t. However, in either case, they learn some valuable
lessons. We hope with the new changes we have described
above we will be able to increase the success of our students
at the implementation stage also.

7. Acknowledgements

The authors would like to acknowledge the generous do-
nations of EDA tools and FPGA boards from Xilinx Corpo-
ration and Digilent Inc. and the contributions of Dr. Rimli
Sengupta, who pioneered this project at Rose-Hulman.

References

[1] David.A. Patterson and John L. Hennsessy, “Computer
Organization and Design - The Hardware/Software In-
terface,” 3rd ed., Morgan Kaufmann.

[2] http://www.logicworks4.com/

[3] http://www.xilinx.com/

[4] http://www.cadence.com/

2007 IEEE International Conference on Microelectronic Systems Education (MSE'07)
0-7695-2849-X/07 $20.00 © 2007

