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Research Objective

• Enhance Raw and TRIPS compilers to produce more 
efficient executable code

• Approach:  
• Adopt optimization view of compilation
• Hybridize EC techniques with existing algorithms



PCA Objectives
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Tile-based Architectures

Context:  
• Ongoing improvements in 
manufacturing technology
• Wire delays becoming 
more significant relative to 
gate delays

Leading PCA efforts achieve 
dynamic responsiveness 
and scalability through use 
of tile-based architectures



PCA Hardware Overview

ISI/Raytheon/Mercury:  
MONARCH/MCHIP

Stanford:                        
Smart Memories

University of 
Texas/IBM:  TRIPS

Production

Prototype

MIT:                               
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MIT/LL:  Early Testbed
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RAW Architecture 
(Agarwal, et al.)

•Raw Architecture Workstation (RAW) fully 
exposes low-level details of architecture to 
compiler
•Allows compiler or software to optimize 

resource allocation for each application
•Compiler generates traditional machine 

instructions and “switch instructions” for 
each tile

•Two orders of magnitude better performance 
than traditional processors in simulations of 
certain applications
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The Raw Architecture

• Divide the silicon into an
array of identical, 
programmable tiles

– A signal can get through a 
small amount of logic and to
the next tile in one cycle

• Tiles connected by software-exposed on-chip 
interconnect

– Scalar Operand Network [HPCA 03]
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TRIPS Architecture
(Burger, et al.)

•Grid Processor Architectures
•Composed of tightly coupled array of ALUs

connected by thin network
•Producer instruction outputs delivered directly 

as consumer instruction inputs
•Example of Explicit Data Graph Execution (EDGE) 

Architecture

•Tera-op Reliable and Intelligently Adaptive 
Processing System (TRIPS) 
•One or more grid processors working in parallel
•Sensor network monitors application behavior, 

feeds back to runtime system, application, and 
compiler
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TRIPS Chip Floorplan
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Compiling for the TRIPS Architecture
(Burger, et al.)

•Difficult multicriteria optimization problem.  
•Compiler must be able to 

•Identify basic blocks
•Partition basic blocks into hyperblocks
•Map hyperblocks to tiles
•Map each operation to an execution unit

•Spatial scheduling affects both concurrency 
and communications delays

•Compiler currently employs a greedy 
approximation algorithm
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Technical Progress:  
Parallel EAs for PCAs

•Enabling steps
•Toolchains obtained from developers
•Correct installations verified

•Parallel evolutionary algorithms 
•Island-model implementations designed 

and implemented for both architectures
•Empirical evaluations in progress
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Technical Progress:  
Taxonomy of EAs in Compilers

•Identified and described opportunities for 
additional compiler optimizations

•General classification of methods for 
application of EC to compilation

•Raw – no automatic scheduling to optimize
•Programmer must partition source code
•EC no more and no less applicable to Raw than 

to any MIPS compiler

•TRIPS – compiler partitions instructions into 
hyperblocks
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Classification of Methods for 
Application of EC to Compilation
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Execution
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Technical Progress:  
EA-Generation of TRIPS Compiler 

Optimization Heuristics

•EA-based generation of more effective TRIPS 
compiler heuristics through integration of 

•Finch Meta-Optimization Framework
•TRIPS C compiler

•Metrics
•Hyperblock count
•Instructions per hyperblock
•Ratio of hyperblocks to instructions per hyperblock
•Static vs. dynamic
•SPEC2000 Benchmarks
•PCA Community Benchmarks
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Finch Meta-optimization 
Framework (Stephenson, et al.) 

• Compiler heuristic to be 
optimized replaced by 
indirect invocation of EA-
provided heuristic

• EA searches space of 
heuristics that have the 
required signature

• Candidate heuristics are 
evaluated by invoking 
compiler, then using 
objective function to 
evaluate compiler output

• EA executes on master 
processor, compiler and 
objective function execute 
on slave processors
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TRIPS C Compiler

•Scalable Compiler for Analytical Experiments 
(Scale) 

•Developed by Department of Computer Science, 
University of Massachusetts, Amherst

• Implemented by shell script wrappers around 
Scale compiler

•Modular compiler, easily modified for different 
output platforms

•Emphasis on hyperblock formation for TRIPS and 
other platforms
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Scale Compiler
Data Flow Diagram
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Example Code
int main(int argc, char** argv) { printf("Hello world\n"); return 0; }

.app-file "test.tcc.c"

.data 

.align 8
_V2:

.ascii "Hello world\n\000"

.text 

.global main

.bbegin main
read $t0, $g1
read $t1, $g2
addi $t2, $t0, -96
sd -88($t0), $t1 S[0]
entera $t3, _V2
enterb $t4, main$1
callo printf
addi $t2, $t0, -96
sd -88($t0), $t1 S[0]
entera $t3, _V2
enterb $t4, main$1

. callo printf
addi $t2, $t0, -96
sd -88($t0), $t1 S[0]
entera $t3, _V2
enterb $t4, main$1
callo printf
write $g1, $t2
write $g2, $t4
write $g3, $t3

.bend

.bbegin main$1
read $t0, $g1
movi $t1, 0
ld $t2, 8($t0) L[0]
addi $t3, $t0, 96
ret $t2
write $g1, $t3
write $g2, $t2
write $g3, $t1

.bend
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Application of Finch to Scale

•Ported Scale to 
Finch environment 

•Converted Finch to 
MPI-based 
communication

•Identified candidate 
heuristic functions
•(Re-)construction of 

abstract syntax tree
•Construction of 

control flow graph
•Standard post-

translation 
optimizations

In lining priorit
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