
MSAEC – July 8, 2006– Seattle, WA

EA-Based Generation of Compiler
Heuristics for Polymorphous Computing

Architectures

This work was supported by the Advanced Computing Architectures Branch, Information Directorate,
Air Force Research Laboratory, Air Force Materiel Command, USAF, under grant FA8750-05-1-0019.

Laurence D. Merkle, Michael C. McClurg,
Matt G. Ellis, Tyler G. Hicks-Wright

Department of Computer Science and Software Engineering
Rose-Hulman Institute of Technology

5500 Wabash Ave, CM-103, Terre Haute, IN
merkle@rose-hulman.edu

mailto:merkle@rose-hulman.edu

MSAEC – July 8, 2006 – Seattle, WA

Outline

•Research Objective
•PCA Background

•DARPA PCA Program
•MIT RAW Project
•UT Austin TRIPS Project

•Technical Progress
•Parallel EAs for PCAs
•Taxonomy of EAs in Compilers
•EA-Generation of TRIPS Compiler Heuristics

•Future Directions

MSAEC – July 8, 2006 – Seattle, WA

Research Objective

• Enhance Raw and TRIPS compilers to produce more
efficient executable code

• Approach:
• Adopt optimization view of compilation
• Hybridize EC techniques with existing algorithms

PCA Objectives

Architectural
Flexibility

1. High efficiency selectable
virtual machines

2. Mission Adaptation
(Constraints e.g. energy)

3. Portability/Evolvability

Two+ Major Morph States

N Minor Morph States

Two Layer Morphware

GOAL

Mission Agility
1. In mission (retargetable)
2. Mission – to - mission
3. New threat scenario

msec
Days
Months

Processing Diversity
1. Breadth of processing

2. Uniform performance

Four Classes
1. Signal/Data Processing
2. Information
3. Knowledge
4. Intelligence

Competitive with
best-in-class

PCA technology supports agile processing
as a function of dynamic mission objectives and constraints

PCA technology supports agile processing
as a function of dynamic mission objectives and constraints

DSP
Class

PPC
Class

Server
Class

Specialized
Class

Selectable
Virtual

Machines

PCA Morph Space

Architecture Space

P
e
r
f
o
r
m
a
n
c
e

Breadth
Of

PCA

Breadth
Of

PCA

MSAEC – July 8, 2006 – Seattle, WA

Tile-based Architectures

Context:
• Ongoing improvements in
manufacturing technology
• Wire delays becoming
more significant relative to
gate delays

Leading PCA efforts achieve
dynamic responsiveness
and scalability through use
of tile-based architectures

PCA Hardware Overview

ISI/Raytheon/Mercury:
MONARCH/MCHIP

Stanford:
Smart Memories

University of
Texas/IBM: TRIPS

Production

Prototype

MIT:
RAW (Early Prototype)

MIT/LL: Early Testbed

MSAEC – July 8, 2006 – Seattle, WA

RAW Architecture
(Agarwal, et al.)

•Raw Architecture Workstation (RAW) fully
exposes low-level details of architecture to
compiler
•Allows compiler or software to optimize

resource allocation for each application
•Compiler generates traditional machine

instructions and “switch instructions” for
each tile

•Two orders of magnitude better performance
than traditional processors in simulations of
certain applications

8Presented at PCA PI Meeting, 18 Aug 04, Monterey, CA

The Raw Architecture

• Divide the silicon into an
array of identical,
programmable tiles

– A signal can get through a
small amount of logic and to
the next tile in one cycle

• Tiles connected by software-exposed on-chip
interconnect

– Scalar Operand Network [HPCA 03]

Static Router
Fetch Unit

Compute
Processor
Fetch Unit

Compute
Processor
Data Cache

MSAEC – July 8, 2006 – Seattle, WA

TRIPS Architecture
(Burger, et al.)

•Grid Processor Architectures
•Composed of tightly coupled array of ALUs

connected by thin network
•Producer instruction outputs delivered directly

as consumer instruction inputs
•Example of Explicit Data Graph Execution (EDGE)

Architecture

•Tera-op Reliable and Intelligently Adaptive
Processing System (TRIPS)
•One or more grid processors working in parallel
•Sensor network monitors application behavior,

feeds back to runtime system, application, and
compiler

10TRIPS/PCA review
August 18, 2004

10

Presented at PCA PI Meeting, 18 Aug 04, Monterey, CA

TRIPS Chip Floorplan

MSAEC – July 8, 2006 – Seattle, WA

Compiling for the TRIPS Architecture
(Burger, et al.)

•Difficult multicriteria optimization problem.
•Compiler must be able to

•Identify basic blocks
•Partition basic blocks into hyperblocks
•Map hyperblocks to tiles
•Map each operation to an execution unit

•Spatial scheduling affects both concurrency
and communications delays

•Compiler currently employs a greedy
approximation algorithm

MSAEC – July 8, 2006 – Seattle, WA

Technical Progress:
Parallel EAs for PCAs

•Enabling steps
•Toolchains obtained from developers
•Correct installations verified

•Parallel evolutionary algorithms
•Island-model implementations designed

and implemented for both architectures
•Empirical evaluations in progress

MSAEC – July 8, 2006 – Seattle, WA

Technical Progress:
Taxonomy of EAs in Compilers

•Identified and described opportunities for
additional compiler optimizations

•General classification of methods for
application of EC to compilation

•Raw – no automatic scheduling to optimize
•Programmer must partition source code
•EC no more and no less applicable to Raw than

to any MIPS compiler

•TRIPS – compiler partitions instructions into
hyperblocks

MSAEC – July 8, 2006 – Seattle, WA

Classification of Methods for
Application of EC to Compilation

Effectiveness –
Application
execution time

Efficiency –
Compiler execution
time

Reproducibility
(w/o controlling
random number
generator)

Compiler
Algorithms

Unconstrained
search for best
overall compiler

Can be explicitly
considered as an
objective function

Compilation

Compiler
Parameters

Regular and nearly
unconstrained
search space

Can be explicitly
considered as an
objective function

Compilation

Compile Time Unconstrained
search for fastest
executable

Too slow for use in
development
environment

Execution

Schedule Time Dynamic search for
fastest execution

Essentially
unchanged

None

MSAEC – July 8, 2006 – Seattle, WA

Technical Progress:
EA-Generation of TRIPS Compiler

Optimization Heuristics

•EA-based generation of more effective TRIPS
compiler heuristics through integration of

•Finch Meta-Optimization Framework
•TRIPS C compiler

•Metrics
•Hyperblock count
•Instructions per hyperblock
•Ratio of hyperblocks to instructions per hyperblock
•Static vs. dynamic
•SPEC2000 Benchmarks
•PCA Community Benchmarks

MSAEC – July 8, 2006 – Seattle, WA

Finch
(Evolutionary

Algorithm)

Compiler
(e.g. Scale)

Benchmarks
(e.g. GMTI)

Compiler flags
(e.g. -inl 10)

Compiler output
(e.g. assembly

code)

Objective function
(e.g. instructions
per hyperblock)

Compiler
component

(e.g. in-lining
priority function)

Finch Meta-optimization
Framework (Stephenson, et al.)

• Compiler heuristic to be
optimized replaced by
indirect invocation of EA-
provided heuristic

• EA searches space of
heuristics that have the
required signature

• Candidate heuristics are
evaluated by invoking
compiler, then using
objective function to
evaluate compiler output

• EA executes on master
processor, compiler and
objective function execute
on slave processors

MSAEC – July 8, 2006 – Seattle, WA

TRIPS C Compiler

•Scalable Compiler for Analytical Experiments
(Scale)

•Developed by Department of Computer Science,
University of Massachusetts, Amherst

• Implemented by shell script wrappers around
Scale compiler

•Modular compiler, easily modified for different
output platforms

•Emphasis on hyperblock formation for TRIPS and
other platforms

MSAEC – July 8, 2006 – Seattle, WA

Scale Compiler
Data Flow Diagram

MSAEC – July 8, 2006 – Seattle, WA

Example Code
int main(int argc, char** argv) { printf("Hello world\n"); return 0; }

.app-file "test.tcc.c"

.data

.align 8
_V2:

.ascii "Hello world\n\000"

.text

.global main

.bbegin main
read $t0, $g1
read $t1, $g2
addi $t2, $t0, -96
sd -88($t0), $t1 S[0]
entera $t3, _V2
enterb $t4, main$1
callo printf
addi $t2, $t0, -96
sd -88($t0), $t1 S[0]
entera $t3, _V2
enterb $t4, main$1

. callo printf
addi $t2, $t0, -96
sd -88($t0), $t1 S[0]
entera $t3, _V2
enterb $t4, main$1
callo printf
write $g1, $t2
write $g2, $t4
write $g3, $t3

.bend

.bbegin main$1
read $t0, $g1
movi $t1, 0
ld $t2, 8($t0) L[0]
addi $t3, $t0, 96
ret $t2
write $g1, $t3
write $g2, $t2
write $g3, $t1

.bend

MSAEC – July 8, 2006 – Seattle, WA

Finch
(Evolutionary

Algorithm)

Compiler
(e.g. Scale)

Benchmarks
(e.g. GMTI)

Compiler flags
(e.g. -inl 10)

Compiler output
(e.g. assembly

code)

Objective function
(e.g. instructions
per hyperblock)

Compiler
component

(e.g. in-lining
priority function)

Application of Finch to Scale

•Ported Scale to
Finch environment

•Converted Finch to
MPI-based
communication

•Identified candidate
heuristic functions
•(Re-)construction of

abstract syntax tree
•Construction of

control flow graph
•Standard post-

translation
optimizations

In lining priorit

MSAEC – July 8, 2006 – Seattle, WA

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7

ln(max code bloat)

In
st

ru
ct

io
ns

 p
er

 h
yp

er
bl

oc
k

In-Lining Technique Results:
GMTI Benchmark

MSAEC – July 8, 2006 – Seattle, WA

References

• Agarwal, A. Raw Computation. Scientific American, August, 1999.
• Burger, D., S. Keckler, K. McKinley, M. Dahlin, L. John, C. Lin, C. Moore, J.

Burrill, R. McDonald, W. Yoder, and the TRIPS Team. “Scaling to the End of
Silicon with EDGE Architectures.” IEEE Computer, July 2004, pp. 44-55.

• Goldberg, D. The Design of Innovation. Kluwer Academic Publishers, Boston,
2002.

• Stephenson, et al. “Meta Optimization: Improving Compiler Heuristics with
Machine Learning”. MIT.

• Scale project website (http://osl-www.cs.umass.edu/Scale), Scale Compiler
Group, Department of Computer Science, University of Massachusetts,
Amherst.

• Taylor, M., J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H.
Hoffmann, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N.
Shnidman, V. Strumpen M. Frank, S. Amarasinghe and A. Agarwal. The Raw
Microprocessor: A Computational Fabric for Software Circuits and General
Purpose Programs. IEEE Micro, Mar/Apr 2002.

http://osl-www.cs.umass.edu/Scale

	EA-Based Generation of Compiler Heuristics for Polymorphous Computing Architectures
	Outline
	Research Objective
	PCA Objectives
	Tile-based Architectures
	PCA Hardware Overview
	RAW Architecture �(Agarwal, et al.)
	The Raw Architecture
	TRIPS Architecture� (Burger, et al.)
	TRIPS Chip Floorplan
	Compiling for the TRIPS Architecture�(Burger, et al.)
	Technical Progress: �Parallel EAs for PCAs
	Technical Progress: �Taxonomy of EAs in Compilers
	Classification of Methods for Application of EC to Compilation
	Technical Progress: �EA-Generation of TRIPS Compiler Optimization Heuristics
	Finch Meta-optimization Framework (Stephenson, et al.)
	TRIPS C Compiler
	Scale Compiler�Data Flow Diagram
	Example Code
	Application of Finch to Scale
	In-Lining Technique Results: GMTI Benchmark
	References

