
1. Introduction

Many simulation models require an unsatisfactory
amount of time when run on a single processor.
Parallelizing these simulations provides the requisite
computational resources to achieve the desired
running time, but also introduces communications
costs that can outweigh the gains of parallelization.
Load-balancing algorithms attempt to find the optimal
tradeoff between placing simulation objects together
to reduce communication costs and distributing them
to gain parallelism. Static load-balancing algorithms
assign simulation objects to processors before the

Automated Load Balancing of
a Missile Defense Simulation
Using Domain Knowledge
Martin C. Carlisle
Department of Computer Science
United States Air Force Academy
2354 Fairchild Drive
USAFA, CO 80840-6234
carlislem@acm.org

Laurence D. Merkle1

Department of Computer Science and Software Engineering
Rose-Hulman Institute of Technology
5500 Wabash Avenue
Terre Haute, IN 47803
merkle@rose-hulman.edu

For discrete-event simulations with a large number of objects, parallelization provides an
opportunity for improved performance. However, if simulation objects are not placed carefully,
the additional communication costs can outweigh the performance gain from adding CPUs. For
many simulations, the large number of objects makes manual placement of objects impractical.
We present two new algorithms for static load balancing that, using a small amount of domain
knowledge and run-time measurements, automatically discover objects of different classes that
communicate frequently and place these objects on the same processor. We compare results
obtained from a missile defense simulation implemented in SPEEDES using our algorithms to
those obtained with previously published load-balancing algorithms.

Keywords: Static load balancing, missile defense, SPEEDES, domain knowledge, genetic
algorithms

simulation begins. Dynamic load-balancing algorithms
use run-time information to change the allocation during
the simulation.
 Although it has been stated that it is preferable to use
dynamic load balancing, static load-balancing schemes
are attractive because of their simpler implementation
and reduced cost at run time [1,2]. Furthermore, in certain
cases static load-balancing schemes are competitive with
dynamic load balancers [2]. Our simulation uses the
SPEEDES framework [3], which uses an object-oriented
computational model. A simulation model is created by
defining simulation objects, object managers for them,
and events. Object managers have the ability to control
the placement of the simulation objects on processors;
therefore, it is simple to implement a static load-balancing
scheme, and previous research has found such schemes JDMS, Vol. 1, Issue 1, April 2004 Page 59–68

© 2004 The Society for Modeling and Simulation International

Volume 1, Number 1 60 JDMS

Carlisle and Merkle

to be effective [4].
 The simulation is of a single theater missile defense
mission. Theater missile defense systems are deployed
with troops to protect the troops from enemy missile
attack. Theater missile defense systems [5] that are
currently deployed and are represented in the simulation
include the Patriot, Theater High Altitude Area Defense
system (THAAD), Aegis, and others. Simulating
these systems allows the DoD to develop strategies
for the use of these systems without the expense of
staging exercises with the real equipment, and to
evaluate potential new missile defense acquisitions.
The simulation in this work is actually used for joint
exercises.
 Figure 1 represents the simulated battlespace. The
theater is divided into regions, with each region having
its own battle manager, who is responsible for defending
assets within the region. A theater manager coordinates
the defense. This is important because a region that
is under significant attack may need assistance from
other regions between it and the attacker. For example,
if the easternmost region in Figure 1 is under attack
from an enemy to the west of the battlespace, the other
three regions may have the opportunity to shoot down
the incoming missiles.

Figure 1. An example battlespace

 Each battle manager has launcher(s) under its control
(e.g., Patriot batteries). Each of those launchers has a
certain number of interceptors. Incoming threats are
referred to as missiles. Each of these real-world objects
is modeled as an object in the simulation. Additionally,
a simulation object, the ThreatFactory, is used to
launch missiles, and other simulation objects perform
I/O. Together, there are approximately 3,000 objects in
the simulation, which simulates a 25-minute attack.
 Although the simulation provides automated battle
managers, it also allows humans to play these roles.
The simulation has been modified to provide a “human-
in-the-loop” mode, which throttles simulation time to

real time. This distributed interactive simulation has a
different goal for load balancing. When the computer is
managing the battle, our goal is to minimize CPU time.
On the other hand, when people play the part of the
battle managers, our goal is to prevent the simulation
from falling behind real-time (so that the players do not
see delays while managing the battle).
 The particular scenario used in this paper represents
a desired wargame exercise for which the performance
was unsatisfactory. There is continuous pressure to add
more simulation objects to the simulation and increase
the realism of the simulation. Previously, this simulation
used the SPEEDES default layout of objects, a “card-
dealing” algorithm where objects are distributed one at a
time to each processor in turn. Occasionally, they would
manually “stack the deck” to obtain better performance.
This was a time-consuming process that would have to
be redone for each new simulation, so it was desired to
have an automated strategy for accomplishing this. We
implemented two previous algorithms and designed
two new algorithms for automated load balancing. Our
algorithms use a small amount of domain knowledge
to create an allocation. These algorithms require data
from a benchmark simulation and use those results for
subsequent runs.
 Section 2 compares our work to previous algorithms
for automated load balancing. Section 3 describes the
two existing algorithms we implemented and the two
new algorithms we devised for statically load balancing
this simulation. Section 4 reports on the performance
of these algorithms, using the goals of minimizing total
simulation time and real-time lag. Finally, Section 5
provides conclusions and ideas for future work.

2. Related Work

Significant work has been done previously on the
problem of load balancing objects in a simulation.
One unique aspect of our work is that we are not only
interested in possible speedup, but also the real-time lag
of the simulation. The most closely related work was
done by Wilson and Nicol [4]. They presented three
algorithms for automatically allocating simulation
objects to processors using the same simulation
framework, SPEEDES. As with our work, they require
data from a benchmark run of the simulation to create
an allocation for subsequent runs. We implemented
two of these algorithms and compare results of our new
algorithms to these algorithms. We demonstrate that

Volume 1, Number 1 JDMS 61

Automated Load Balancing of a Missile Defense Simulation Using Domain Knowledge

adding domain-specific knowledge to merge objects
before performing the allocation generates improved
performance.
 Boukerche and Tropper [17] also perform a static
partitioning of the simulation objects. They use a
simulated annealing algorithm. This starts with an
initial partition and refines that partition. One of the
algorithms we propose uses a genetic algorithm to
perform a similar refinement. Their work was done in
the context of conservative simulations.
 Gan, et al. [10] discussed using a combination
of static and dynamic loadbalancing schemes. In
particular, the static schemes they used were Metis
[16] and Scotch [14]. Following Gan’s approach, we
peformed a graph partitioning using the simulation
objects as nodes of the graph, and the edges weighted
using various functions of the communications between
those objects. Unfortunately, applying Gan’s methods
to our simulation did not provide an improvement
over the default SPEEDES allocation. This may be
a consequence of using an optimistic simulation
engine, where rollbacks may have a cascading effect
on the running time of the simulation, even though the
communications that caused the rollback do not weigh
heavily in the functions.
 Vee and Hsu [15] also note the importance of
preserving locality (i.e., minimizing the number of inter-
processor messages) when performing load balancing.
However, they assume that the simulation model has
already been decomposed into a number of submodels,
or logical processes (LPs), before their load-balancing
strategy begins. Our scheme uses domain-specific
knowledge to, in essence, create LPs which can then
be load balanced.
 Som and Sargent [9], although they focus on dynamic
load balancing, also provide a pre-processing phase to
combine simulation objects into what they refer to as
strong groups. These strong groups are computed by
examining a directed graph between simulation objects,
where the edges are placed from an object to another
when the first object places something in the queue of
the second. They then remove some edges if they are
deemed to be infrequent. Our research demonstrates
that domain-specific knowledge can provide improved
performance when strong groups cannot be determined
automatically from the simulation.

3. Algorithms

Inputs for the load-balancing algorithms were obtained
by tracing a representative simulation. As with all static
load-balancing schemes, the quality of the output of the
balancing algorithm is dependent on how representative
the trace is. In our situation, we are guaranteed a very
representative trace as the scenario for a human-in-the-
loop wargaming exercise is decided in advance. To
obtain this trace, the simulation was instrumented such
that the following information is available for each
committed event: the simulation object processing the
event, the amount of CPU time consumed by the event,
and the details of simulation events scheduled by the
processing of this event. From this data, the following
summary statistics were computed: the total CPU time
consumed by each simulation object, the number of
messages sent from each simulation object to every
other simulation object, and the amount of CPU time
consumed by each simulation object per five seconds
of simulation time. The simulation models a 1,500
second battle; the five-second granularity was chosen
to provide acceptable scheduling effectiveness while
satisfying memory constraints.
 Each algorithm described below takes as input
the summary statistics, and produces as output a
configuration file for SPEEDES with a complete
allocation of simulation objects to processors. Since
the file I/O of recording the trace data has a significant
impact on the performance of the simulation (the trace
files record hundreds of megabytes of data), tracing is
disabled while allocations are being evaluated.

3.1 Lballoc1

Wilson and Nicol [4] proposed Lballoc1 as an
algorithm for doing static load balancing while ignoring
communication between simulation objects. Lballoc1
is a direct application of a bin-packing heuristic to load
balancing, in which the processors are viewed as the
bins into which the simulation objects must be packed.
Specifically, each processor is viewed as a bin with
unlimited capacity, and the size of each simulation
object is its total measured CPU time. Thus, Lballoc1
considers each object in order of decreasing CPU time,
and allocates it to the currently most lightly loaded
processor.

Volume 1, Number 1 62 JDMS

Carlisle and Merkle

Consider the following set of simulation objects:

Lballoc allocates them in order of decreasing CPU time (left to right), looking only at the amount of CPU time
currently allocated to each processor and selecting the smallest. So, on four processors, the final allocation would be:

The total CPU times allocated to the processors are: 105, 106, 109, 107.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time
50 49 48 46 42 37 31 29 25 23 15 14 9 5 3 1

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPU
1 2 3 4 4 3 2 1 1 2 3 4 3 4 2 1

3.2 Lballoc2

Lballoc2, also by Wilson and Nicol [4], is a more
complicated algorithm that seeks to place objects
that communicate frequently together on the same
processor. The first portion of the algorithm arranges
the objects into a linear chain. This chain is built by
performing a stable marriage algorithm [6] repeatedly
on the objects. The attraction of each object to every
other is determined by the number of communications
between them. Each application of the stable marriage
algorithm reduces the number of simulation objects by
half. Then, for the next application, the attractions are
computed as the sum of communications between the
objects making up the merged objects. After ceiling
(log

2
n) marriage phases, a single merged object is

obtained. These merges can be viewed as creating a
binary tree, where each original object is at a leaf, and

then the linear chain is obtained by a simple depth-first
traversal. An allocation to p processors is obtained by
splitting the chain at the p-1 locations that most evenly
balance the load across the processors.
 The following example demonstrates the design of
Lballoc2. Consider the tree of simulation objects given
in Figure 2.
 The first level of the tree would occur if the pair of
objects that communicates most are 8 and 2, the next
pair (not including 8 and 2) is 4 and 1, etc. Then in the
next phase pairs of simulation objects are considered
(so the pair {8,2} communicates most with the pair
{4,1}). The process repeats until there is only a single
simulation object. An in-order traversal of the tree
creates an ordering of the objects, {8,2,4,1,5,7,6,3},
and this ordering is partitioned across the processors
to minimize the amount of work on the most heavily
loaded processor.

3.3 Adding Domain-Specific Knowledge

In the missile defense simulation, the battle manager
objects perform the vast majority of communications.
Each battle manager must coordinate its actions
with and report its status to all of the other battle
managers. This coordination generates a large number
of messages. These large numbers of communications
between battle managers mask the optimizations that
can be attained by co-locating the battle managers with
other types of objects, e.g., the interceptor launchers
associated with the managers. Lballoc2 misses these
optimizations. For large simulations, it may often be the Figure 2. A tree of simulation objects

Volume 1, Number 1 JDMS 63

Automated Load Balancing of a Missile Defense Simulation Using Domain Knowledge

case that there are groups of objects of different types
that are communicate frequently, and correspondingly
should be co-located in the simulation to obtain the
best performance.
 We allow the user to specify domain-specific
knowledge about the relationships of objects of different
classes. For an object class, we can specify that each
object of that class should be merged with an object of
a different class. For example, in our simulation, we
specified that each launcher should be merged with a
battle manager. We can also specify which direction
of communication to consider. That is, we can either
merge each launcher with the battle manager that sends
the most messages to it, or we can merge each launcher
with the battle manager to which it sends the most
messages. In our simulation, we specified the following
four merge phases:

 1. Merge each Launcher with the Battle
 Manager to which it sends the most
 messages.
 2. Merge each Sensor with the Battle
 Manager to which it sends the most
 messages.
 3. Merge each Interceptor with the
 Launcher that sends it the most messages.
 4. Merge each Missile with the Interceptor
 that sends it the most messages.

 Once the merges are complete, any load-balancing
algorithm can be used to distribute the computation
amongst the processors. We considered two such
algorithms: the same bin-packing strategy as used in
Lballoc1, and a genetic algorithm.

 3.3.1 Bin-pack Merged

Bin-packing is an example of an NP-Hard problem,
which unlike many others, has a heuristic solution
that can be proven worst-case to be within a constant
factor of two of the optimal (the number of bins used is
never more than twice the optimal). Furthermore,
empirical studies have shown that the best-fit decreasing
heuristic generally produces good solutions, and
compares favorably with other heuristics [7]. Thus,
if the merges give us good communication across
processors, combining this with bin-packing should
provide a balanced approach. This algorithm performs
the merge phases described above, sorts the merged
objects by decreasing CPU time, and then allocates
the objects in order to the least loaded processor.

 3.3.2 Genetic Merged

Since objects in the simulation do not contribute to
the computation load throughout the simulation time
(e.g., an interceptor only requires CPU time for the
interval in which it is in flight), it seemed possible
that an allocation that balanced the total load might
inadvertently schedule too much work in particular time
intervals. For example, consider the case where there
are 25 simulation objects, where each simulation object
is active for only a single second of the five seconds
of simulation time. Suppose the first five objects are
active for the first second, the second five the second
second, etc. Considering only the total load, a perfect
balance for five processors would be to place the first
five on the first processor, the second five on the second
processor, etc. Unfortunately, in this case we actually
achieve no parallelism, since only one processor is
active for each five seconds of simulation time. To
avoid this, we designed a genetic algorithm (GA) that
considered CPU time across intervals of five seconds
of simulation time. Genetic algorithms (GAs) are a
form of computation inspired by theories of evolution.
This places them in the class of algorithms called
Evolutionary Algorithms (EAs). In a landmark paper
[11], Bäck and Schwefel provide an excellent review
of evolutionary algorithms, including a historical
perspective and a formal definition attempting to unify
them. Merkle and Lamont generalized the definition to
provide a more rigorous version that precisely captures
the essential nature of EAs [12].
 In GAs, data structures called individuals are used
to represent possible solutions to a problem. In our
problem, each individual is a possible allocation. This
data structure is simply an array indicating, for each
object, to which processor it is assigned. With a large
number of simulation objects, this makes for quite large
individuals in the GA, but this had no noticeable effect
on the effectiveness or efficiency of the algorithm on
the problem instances of interest.
 The most distinguishing characteristic of GAs is
that they manipulate collections of individuals, called
populations, and that the operations performed on
each individual may depend on the other individuals
in the population. This is because the operations
are inspired by the concepts of the theory of natural
evolution, including fitness, selection, mutation, and
recombination.
 The concepts of fitness and selection are closely

Volume 1, Number 1 64 JDMS

Carlisle and Merkle

related, as are the fitness functions and selection
operators that are inspired by those concepts and used
in GAs. The fitness function assigns each individual a
“fitness” based on some evaluation of the solution that it
represents. In the case of optimization problems, which
are perhaps the most common application area for GAs,
the fitness function is related somehow to the objective
function of the problem. The specific relationship
between an individual and the objective function is one
of the design issues involved in applying GAs. Once the
fitness of each individual has been assigned, a selection
operator randomly selects individuals from the current
population to copy into the next population. More fit
individuals have higher probabilities of selection. Early
GAs used fitness-proportionate selection operators,
meaning that the expected number of copies of each
individual in the next population was proportional to
its fitness (normalized by the average fitness). This
approach has a number of theoretical shortcomings,
so few modern GAs use it. Instead, they use selection
operators for which the behavior is invariant to scaling
and translation of the fitness function. The selection
operator used in this research, binary tournament
selection, is both scale and translation invariant and is
used fairly commonly.
 Mutation operators randomly alter individuals as a
means of exploring the search space in neighborhoods of
known good solutions. In the case of GAs, it is common
to “flip” each bit in the string with a probability called
the mutation rate. Traditionally this probability is quite
small, with the intent of investing a small amount of
computational resources in searching locally in the
vicinity of solutions that are presumably relatively
good. However, it is now commonly recognized that
for some applications, including the one described in
this article, greater effectiveness can be achieved by
using non-traditional (i.e., larger) mutation rates. It is
also fairly common to incorporate domain knowledge
in the design of specialized mutation operators;
we use a specialized mutation operator rather than
simply flipping bits in the binary representation of
individuals.
 As mentioned above, the feature of genetic
algorithms that most clearly distinguishes them from
related algorithms is their manipulation of collections
of individuals. This manipulation occurs in the form
of recombination operators, which randomly select
features from two or more individuals to create new
individuals. For GAs with fixed-length binary string
representations, recombination operators are usually

called “crossover,” and there are several common
variations. The earliest and easiest to understand is
single-point crossover, which randomly chooses a
crossover point within the length of the two individuals
being recombined, and exchanges the parts of the
individuals following the crossover point. Two-point
crossover chooses two crossover points, and exchanges
the parts of the individuals between the two points.
Multi-point crossover extends this idea to more than
two crossover points. As with mutation operators,
it is common to incorporate domain knowledge in
the design of specialized crossover operators. The
research described in this article is an example of that
approach.
 In successful applications, the combined effect of
the selection, mutation, and recombination operators
is to gradually produce populations of individuals that
represent very good solutions to the underlying problem,
in analogy to the principle of “survival of the fittest.”
As previously mentioned, for each simulation object,
we computed how much CPU time it used during each
five seconds of simulation time. For our GA’s fitness
function, we first determined the amount of CPU time
allocated to the most heavily loaded CPU during each
five seconds of simulation time. We then added these
together across all of the five-second intervals. The
fitness function was a weighted sum of this time total
with the number of off-processor messages generated
by the allocation.
 In our GA, each individual represented a possible
allocation, and each population contained 100
individuals. The initial population consisted of
randomly generated individuals. A modified binary
tournament selection was used to propagate the
fittest individuals. Specifically, the individuals were
randomly paired, and one round of a tournament was
used to generate 50 individuals for this generation.
Then, the original individuals were randomly paired
again, and another round of a tournament selected the
second 50 individuals. Note this guarantees the fittest
individual of the previous generation appears twice in
this generation (once from each tournament). Other
individuals may appear 0, 1, or 2 times in the new
generation (if there is a unique least fit individual, it is
guaranteed not to appear).
 For each individual (possible allocation) selected
for mutation, we randomly redistributed the simulation
objects between two of its processors. Specifically,
for each simulation object assigned to one of these
processors, we moved it to the other with probability

Volume 1, Number 1 JDMS 65

Automated Load Balancing of a Missile Defense Simulation Using Domain Knowledge

one-half. Based on our experiments, we found a mutation
rate of 30% to generate good results.
 We used a domain-specific crossover operator. In
each application of the operator, one parent acted first
as a “donor” while the other acted as an “acceptor” to
produce one offspring, and then the parents exchanged
roles to produce a second offspring. The construction
of each offspring occurred as follows:

 1. Initialize the offspring by making a copy of the acceptor.
 2. Determine the set S

B
 of objects allocated to the “best”

 processor by the donor and the set S
W

 of objects
 allocated to the “worst” processor by the acceptor. The
 determination was based on a weighted sum of two
 quantities: the difference between the CPU time
 allocated to that processor and the average CPU time,
 and the number of off-processor messages sent by
 objects allocated to that CPU.
 3. Within the offspring, deallocate all of the objects in
 S

B
∪S

W
 (necessarily leaving at least one processor of the

 copy empty).
 4. Within the offspring, allocate all of the objects in S

B
 to

 an empty processor.
 5. Within the offspring, allocate each of the objects in S

W
-

 S
B
 using the best-fit heuristic of Lballoc1.

 Crossover was performed on 70% of the population.
That is, 70% of the individuals were selected randomly
and mated in pairs. These two parents generated two
offspring using the method described above. Then, of
these four (two parents and two offspring), the two best
were reinserted into the population.
 Experimentally, we found that the results converged
after about 100 generations (it appeared to be
approaching an asymptotic limit), so in each case, we
allowed the genetic algorithm to run for 100 generations
on the merged objects. Note that each new generation
does not require an additional run of the simulation on
the parallel computer. The genetic algorithm runs within
a few minutes on a single processor (each generation
required only a couple of seconds).

4. Results

We used three metrics to determine how well our
allocations performed: wall-clock time, maximum
real-time lag, and real-time integrated lag. The metrics
presented represent the average of three runs of the
simulation. Wall-clock time is obtained by simply
letting the simulation run as fast as possible, and
measuring the total elapsed time. Since our simulation
could be run with people playing the roles of the battle

managers, we ran the simulation again, throttled to real
time. For these runs, we measured the maximum real-
time lag (how far did the simulation fall behind real
time at the worst point), and real-time integrated lag.
Real-time integrated lag is designed to measure the
total amount of lag in the simulation. Consider the plot
of lag across real time given in Figure 3.
 Real-time integrated lag is the sum of the lag areas
beneath the x axis. The integral is estimated using
the trapezoid rule given measurements that occur
every second of real time. Each of these runs was
performed on a 24 processor SGI Origin 3000 series
supercomputer, running in isolation mode. We did
not run SPEEDES on four of the processors so that
display processes could run on dedicated processors.
The display processes are not SPEEDES simulation
objects, but instead constantly update the screen with
information about the simulation. These processes are
ignored by our algorithms.
 Figures 4 and 5 show the As Fast As Possible
(AFAP) simulation time for the four allocation schemes
we implemented, as well as the results from using the
default allocation provided by SPEEDES. Note that
Lballoc2, while generally the worst of the allocation
schemes we implemented, has the best performance
on 20 processors. Overall the best performance occurs
using the bin-pack merged scheme on 16 processors.
 Figure 6 shows the maximum lag behind real-time
in seconds. Generally the ranking of the algorithms is
similar for maximum lag; however the best case now
occurs on 12 processors using the bin-pack merged
allocation.
 Figures 7 and 8 provide the real-time integrated
lag for the simulation runs. Again the ranking of the
algorithms is similar, with the best results occurring on
12 processors using the bin-pack merged allocation.
 The experimental results were encouraging. For each
algorithm, the best performance obtained was better
than the best performance of the SPEEDES default
scheme on any number of processors. Furthermore,
the two domain-specific algorithms outperformed
their counterparts. Not only did the domain-specific

Figure 3. A sample lead/lag plot across a simulation

Volume 1, Number 1 66 JDMS

Carlisle and Merkle

algorithms have better performance, but they also
obtained this performance using fewer processors.
 Somewhat surprisingly, the bin-pack merged
algorithm did better than the genetic merged algorithm.
Analyzing the data, we note that the evaluation
function for the genetic merged allocation was less
than 0.5% better than that of bin-pack merged. We
suspect that the bin-pack merged allocation performed
better as it tended to cluster the low CPU objects
together on lightly loaded processors, whereas the
genetic allocations were more scattered. This is
important because these low CPU objects, missiles
and interceptors, publish their information via proxies
to all of the battle managers. If they are on heavily
loaded processors, they can force the other processors
to keep rolling back. An initial test of this hypothesis
was performed by taking the Lballoc2 allocation on
20 processors, and scrambing the allocation of the
missiles for one test, and scrambling the allocation of
the interceptors for another. Scrambling the allocation
of the interceptors more than doubled the integrated lag
(to 3533.79 from 1542.73). Scrambling the allocation
of the missiles increased the integrated lag by over a
factor of 10 (to 16466.55 from 1542.73). While these
results are very preliminary, they suggest that missiles
and interceptors, despite being both low CPU objects
with few messages, have an important effect on the
performance of the simulation.

5. Conclusions and Future Work

We have compared four static load-balancing schemes
on a theater missile defense simulation, including two
previously published static load-balancing schemes
for SPEEDES. We have found that by adding a very
small amount of domain-specific knowledge, we
obtain significant performance improvement. The
new algorithms reduce integrated lag by over 75%
compared to the SPEEDES default allocation and over

10% compared to Lballoc2. They also reduce maximum
lag by 62% compared to the default allocation and
over 16% compared to Lballoc2. Finally, they reduce
the total As Fast As Possible simulation time by over
16% and 1.3% compared to the default allocation
and Lballoc2, respectively. Furthermore, the optimal
results for the bin-pack merged scheme occur on fewer
processors than Lballoc2.
 Since the amount of information that must be provided
by the domain expert is quite small, these algorithms
could be readily applied to other simulations having
multiple object classes. Using this small amount of
information, these algorithms are able to automatically
discover related objects of different classes and place
them together.
 As can be seen in the experimental results, this
simulation scenario is still far from achieving perfect
parallelism. Additionally, the real-time lag, while
significantly improved, is not quite acceptable (ideally
the maximum real-time lag won’t exceed 10 seconds).
For these reasons, and because we anticipate increased
demand for the simulation (larger numbers of objects,
more fidelity, etc.), we plan to explore other ways of
improving efficiency, such as reducing the number
and size of communications between objects. This will
require analysis of the code for the simulation itself,

As Fast As Possible Time (seconds)

Algorithm\ #Proc 1 4 8 12 16 20

Default 2836.35 1088.97 755.25 702.35 719.03 808.54

lballoc1 1097.47 800.69 686.30 633.30 745.43

Lballoc2 1109.19 749.94 704.64 711.81 593.53

genetic merged 1014.82 702.37 651.68 633.97 715.53

bin-pack merged 1072.22 726.93 603.67 585.42 594.85

Figure 4. As Fast As Possible simulation time

Figure 5. Graph of AFAP simulation time.

Se
co

nd
s

Volume 1, Number 1 JDMS 67

Automated Load Balancing of a Missile Defense Simulation Using Domain Knowledge

or the use of a different simulation framework, such as
one of those proposed by Nutaro [18]. We expect the
load-balancing schemes to work under any optimistic
simulation framework, as they balance the load between

Maximum Real-Time lag (seconds)

Algorithm\ #Proc 8 12 16 20

Default 41.26 29.45 51.92 52.84

Lballoc1 70.51 20.12 18.77 31.87

Lballoc2 44.6 25.76 47.4 13.15

genetic merged 25.07 18.39 13.87 19.17

bin-pack merged 42.76 11.02 12.81 12.67

Real-Time lag (seconds2)

Algorithm\ #Proc 8 12 16 20

Default 7682.18 5604.99 18807.43 12388.49

Lballoc1 13930.04 4130.61 3761.77 5670.99

Lballoc2 7494.57 4227.07 8338.64 1542.73

genetic merged 3823.65 3046.03 2607.07 4297.31

bin-pack merged 9999.13 1381.24 2384.19 2460.89

Figure 6. Maximum real-time lag in seconds

Figure 7. Real time integrated lag data

Figure 8. Integrated lag data

processors, and reduce the number of output events to
other processors. Additionally, we plan to explore load
balancing in the context of the larger national missile
defense scenario [8].

se
co

nd
s2

Volume 1, Number 1 68 JDMS

Carlisle and Merkle

6. References

[1] Stone, H.S. 1977. Multiprocessor Scheduling with the Aid of Network

Flow Algorithms. January 1977 IEEE Transactions on Software
Engineering, Vol. SE-3, No. 1, 85-93.

[2] Sanders, P. On the Competitive Analysis of Randomized Static Load
Balancing. Available at http://citeseer.nj.nec.com/79406.html.

[3] Steinman, J. 1992. SPEEDES: A Multiple-Synchronization
Environment for Parallel Discrete-Event Simulation. In
International Journal in Computer Simulation, Vol. 2, No. 3, 251-
286.

[4] Wilson, L.F., D.M. Nicol. 1995. Experiments in Automated Load
Balancing. In NASA CR-198241, ICASE Report #95-80.

[5] Ballistic Missile Defense Organization. Theater Missile Defense
Systems. Available at http://www.acq.osd.mil/bmdo/bmdolink/html/
tmd.html.

[6] Sedgewick, R. 1988. Algorithms, Second Edition. Reading, MA:
Addison-Wesley.

[7] Baase, S., A. Van Gelder. 2000. Computer Algorithms: Introduction to
Design and Analysis, Third Edition. Reading, MA: Addison-Wesley.

[8] Ballistic Missile Defense Organization. National Missile Defense.
Available at http://www.acq.osd.mil/bmdo/bmdolink/html/nmd.
html.

[9] Som, T., R. Sargent. 2000 Model structure and load balancing in
optimistic parallel discrete event simulation. In Proceedings of the
2000 Workshop on Parallel and Distributed Simulation (PADS),
IEEE, 147-154.

[10] Gan, B. P., Y.H. Low, S.J. Turner, W. Cai, W.J. Hsu, S.Y. Huang.
2000. Load Balancing for Conservative Simulation on Shared
Memory Multiprocessor Systems. Proceedings of the 2000
Workshop on Parallel and Distributed Simulation (PADS), IEEE,
139-146.

[11] Bäck, T., H.P. Schwefel. 1993. An Overview of Evolutionary
Algorithms for Parameter Optimization. Evolutionary Computation,
Vol. 1, No. 1, 1-23.

[12] Merkle, L.D., G.B. Lamont. 1997. A Random Function Based
Framework for Evolutionary Algorithms. In Proceedings of the
Seventh International Conference on Genetic Algorithms, Thomas
Bäck (ed.), 105-112.

[13] Langdon, W. B., et al., editors. 2000. Proceedings of the Genetic and
Evolutionary Computation Conference. San Franciso, CA: Morgan
Kauffman Publishers.

[14] Pellegrini, F.. J. Roman. 1996. SCOTCH: A Software Package for
Static Mapping by Dual Recursive Bipartitioning of Process and
Architecture Graphs. In Proceedings of HPCN ’96. Brussels,
Belgium: LNCS 1067, Springer, 493-498.

[15] Vee, V.Y., W.J. Hus. 2000. Locality-preserving load-balancing
mechanisms for synchronous simulations on shared-memory
multiprocessors. Proceedings of the 2000 Workshop on Parallel and
Distributed Simulation (PADS), IEEE, 131-138.

[16] Karypis, G. V. Kumar. 1995. Multilevel Graph Partition and Sparse
Matrix Ordering. International Conference on Parallel Processing.

[17] Boukerche, A. C. Tropper. 1994. A Static Partitioning and Mapping
Algorithm for Conservative Parallel Simulations. In Proceedings of
the 8th Workshop on Parallel and Distributed Simulation (PADS),
IEEE, 164-172.

[18] Nutaro, J. 2003. Parallel Discrete Event Simulation with Application
to Continuous Systems. Ph.D. Dissertation, University of Arizona.

Endnotes
 1Work performed while this author was a member

of the faculty at the U.S. Air Force Academy.

http://www.acims.arizona.edu/PUBLICATIONS/PDF/nutaro_thesis.pdf
http://www.acims.arizona.edu/PUBLICATIONS/PDF/nutaro_thesis.pdf

