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We report the results of a year-long experiment in the use of robots to teach computer science.  Our data set 
compares results from over 800 students on identical tests from both robotics and nonrobotics-based laboratory 
sessions.  We also examine the effectiveness of robots in encouraging students to select computer science or 
computer engineering as a field of study. 
Our results are negative:  test scores were lower in the robotics sections than in the nonrobotics ones, nor did the 
use of robots have any measurable effect on students� choice of discipline. We believe the most significant 
factor that accounts for this is the lack of a simulator for our robotics programming system.  Students in robotics 
sections must run and debug their programs on robots during assigned lab times, and are therefore deprived of 
both reflective time and the rapid compile-run-debug cycle outside of class that is an important part of the 
learning process.  We discuss this and other issues, and suggest directions for future work. 
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1. INTRODUCTION 
Educators have thought about robots in the classroom for as long as they have thought 
about robots:  their potential as teaching tools and as motivators has long been 
recognized.  For most of our lifetimes, however, economic constraints prohibited 
extensive deployment of robots in all but the most rarefied environments.  Initial attempts 
to capitalize on robots as teaching tools had to rely on software models [Pattis 1981]. 

Within the past few years, however, improvements in performance and cost have 
changed the picture dramatically.  Robotic systems, both customized and mass-produced, 
are now sufficiently affordable, powerful, and reliable to be deployed in the college and 
even the high school classroom.  Interest in the use of robots as educational tools has 
exploded within the past few years [AAAI 2001; Beer and Chiel 2001; Flowers and 
Gossett 2002; Harlan 2001; Klassner 2002; Wolz 2001]. We believe this trend will only 
increase as robots continue to get better and cheaper. 
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But while educators interested in robotics have developed important prototype 
systems and reported on their deployment in the classroom, very little is known about 
their effect on learning.  The computer science education community has organized 
panels and workshops on the subject to facilitate the exchange of ideas [AAAI 2001; 
Congdon 2001], but quantitative studies that assess how robots affect learning are 
missing from the literature. 

We report one such study here.  We were among the first institutions to deploy robots 
in the classroom, so we have considerable interest in this question.  The existence of a 
core course at our institution that all students must take provides a large sample 
population from which to draw conclusions, and the systematic use of databases for 
student information and test scores provide us with solid, reliable data for analysis.   In 
the sections that follow, we present the basic parameters of the study, a statistical analysis 
of the data, and comment on subjective feedback measures.  We then present our 
conclusions and discuss future work. 

 
2. EXPERIMENTAL PARAMETERS 
Our study analyzes data from the 2000-2001 academic year offerings of our core 
computing course, required for all our students and normally taken in the freshman year.  
This course was taught to 938 students in 48 sections of 15-20 students each.  Nine of 
these sections were designated as �robotics� sections, where we provided laboratory 
instruction using Lego Mindstorms ® robots and the Ada/Mindstorms programming 
environment [Fagin 2000b].  We tracked student performance on all exams, as well as 
their rank in the course after grades were assigned.  Additionally, our students declare a 
major no later than the middle of their sophomore year, so we now have data on the 
effectiveness of robots in encouraging the selection of computer science or computer 
engineering as a field of study. 
 
2.1 The Ada/Mindstorms 2.0 Programming Environment 
A screen shot of the Ada/Mindstorms 2.0  programming environment is shown in Figure 
1.  It has an easy to use GUI, and runs on any Windows PC.  It is available for free at 
http://www.usafa.af.mil/dfcs/adamindstorms.htm. 

The coding flow of the programming environment is shown in Figure 2.  Programs 
are written in an Ada subset plus an API of Mindstorms-specific function calls, and 
compiled with the Ada/Mindstorms compiler, which is a fully validated Ada compiler, 
with additional logic to check that the program uses only those constructs supported by 
the Ada/Mindstorms subset.  These constructs are necessarily much smaller than the full 
Ada language, due to both Ada�s considerable expressive power and the hardware 
limitations of the Lego Mindstorms platform. 

After the user�s Ada program has been validated, it is translated into Dave Baum�s 
NQC language [Baum 2002], a C-like language for Mindstorms programming.  NQC 
code is assembled into binary bytecodes and downloaded into the Lego Mindstorms RCX 
module, the central component of the Mindstorms system. (For more information on 
Ada/Mindstorms, see Fagin [2000a; 2000b; 2001; 2002]. 
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Fig. 1.  Creating robot programs with Ada/Mindstorms 2.0. 
 
 

 
 

Fig. 2. Ada/Mindstorms programming path. 
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2.2 Tested Computing Concepts and Methods of Assessment 
Both the robotics and the nonrobotics sections were taught introductory programming 
using Ada.  Our core computing course contains six laboratory exercises, emphasizing 
the following concepts: 
 

lab 1:  variables, constants, sequential control flow, procedures without 
parameters 
lab 2:  terminal I/O (nonrobotics lab), procedures with input parameters 
lab 3:  condition-controlled iteration, selection 
lab 4:  count-controlled iteration, procedures with output parameters 
lab 5:  arrays 
lab 6:  file I/O (nonrobotics lab) 
 

These concepts were taught in both the robotics and the nonrobotics sections, using 
different programming assignments but reinforcing similar ideas.  The exceptions were 
part of lab 2 and lab 6.  Since the I/O capabilities of the Mindstorms robot are extremely 
primitive and files are not supported by the robotics environment, terminal and file I/O 
were taught using the same conventional laboratory exercises for all students. 

Students in the nonrobotics sections were also taught the concept of packages, the 
Ada mechanism for separate compilation.  Packages are not currently supported by 
Ada/Mindstorms, and therefore we decided not to teach this concept in the robotics 
sections. 

The course concludes with a programming project that ties all the concepts together, 
usually a game, in which students are allowed to work in teams.  The game is typically 
chosen so that a simple strategy is easy to construct, but a good one takes some thinking.  
On the last day of class, programs compete against each other in a virtual tournament.  
We attempted to make both the robotics and the nonrobotics sections as similar as 
possible by assigning team-based projects built around a strategy.  In the nonrobotics 
sections, teams were given a basic programming environment for the game Othello in the 
fall semester and Mancala in the spring semester, and competed against each other by 
implementing strategies for making the next move, given a board configuration.  In the 
robotics sections, one of us developed a jousting game similar to Nim, where robots faced 
each other on a path marked off with foil stripes and moved forward a certain number of 
spaces, beaming their moves to their opponent using the RCX�s infrared port.  The robot 
that took the last available space is considered to have won the joust. 

Students in this course could earn up to 1000 points, not counting extra credit, based 
on the following scale: 

 
labs 1-5   150 5 labs @ 30 points 
lab 6    40 
practica   160 30, 50, and 80 points 
midterms   250 2 @ 125 points 
final project   100 
final exam   250 
other    50 
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Programming  practica were in-class programming assignments that had to be com-
pleted in a specified time period. 

Since the labs, practica, and final project were different for the robotics and 
nonrobotics sections, we did not compare student performance on those exercises.  Our 
analysis is confined to midterm exam scores, final exam scores, and class rank at the end 
of the semester. 

Midterms and the final consisted of three sections:  multiple choice, short answer, and 
programming.  For both robotics and nonrobotics classes, the multiple choice and short 
answer portions of the test were the same.  For the programming portions, only slight 
modifications were made in a few instances to ensure that correct answers did not require 
concepts that robotics students had not been exposed to (for example, packages).  For the 
vast majority of programming questions, we used identical problems. 
 
3. ANALYSIS:  OBJECTIVE MEASURES 
This section describes the statistical analysis of our experimental data, along with the 
results.  The statistical techniques used are described in the Appendix.  
 
3.1 Exam Performance    
We wanted to measure the effect that a student in a robotics section has on test 
performance.  The analysis considers the effect on both raw exam scores and on residuals 
after the effect of student GPA is removed via linear regression. This was done to guard 
against the possibility that unequal distribution of student academic ability might affect 
the results. The statistical test chosen for analysis is the Kruskal-Wallis H test.   

Our results are unequivocally negative. Strictly speaking, the KW test is only used to 
determine if the scores from the two populations are different.  However, in every case 
where a difference was detected, the scores in the robotics sections were worse. All of 
these differences remained after attempts to compensate for the correletated effects of 
GPA. 

The relevant sample sizes are presented in Table I.  Each semester, approximately 5% 
of the students are excused from the final exam on the basis of their performance during 
the semester.  Those students are obviously excluded from the analysis of performance on 
the final exam.  They are also excluded from the analysis of overall performance on 
exams, but they are included in the analysis of performance on the graded reviews. 
 

Table I. Sample Sizes 
Graded Events 

Fall 2000 Spring 2001 
Population 

Graded 
Reviews 

Final Exam 
and Course 

Total 

Graded 
Reviews 

Final Exam 
and Course 

Total 
Robotics 
Students 53 50 130 125 

Non-Robotics 
Students 444 417 311 292 
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Table II. Fall 2000 Data 
Raw scores GPA-adjusted scores 

Graded Event µ1 µ2 H p R1 R2 H p 
Exam 1 88.1 91.2 .72 .40 0.0 0.0 .25 .62 
Exam 2 107.5 112.0 1.96 .16 -0.1 0.0 .64 .42 
Final MC 109.4 114.8 3.79 .05 -0.3 0.0 2.93 .09 
Final SA 77.4 83.8 6.02 .01 -0.2 0.0 3.73 .05 
Final total 186.7 198.5 7.10 .01 -0.3 0.0 6.09 .01 
Course total 764.6 802.7 4.14 .04 -0.2 0.0 3.84 .05 

 
Table III. Spring 2001 Data 

Raw scores GPA-adjusted scores 
Graded 
Event 

µ1 µ2 H p R1 R2 H p 

Exam 1 MC 44.9 45.5 .59 .44 0.0 0.0 .17 .68 
Exam 1 SA 53.0 57.3 27.24 0 -0.4 0.2 24.98 0 
Exam 1 Total 97.9 102.9 17.82 0 -0.3 0.1 16.74 0 
Exam 2 MC 38.7 38.5 .003 .95 0.1 0.0 .33 .57 
Exam 2 SA 54.2 57.4 7.25 .01 -0.2 0.1 5.71 .02 
Exam 2 Total 92.9 95.9 4.76 .03 -0.1 0.0 3.06 .08 
Final MC 124.1 125.8 1.77 .18 -0.1 0.0 .53 .47 
Final SA 77.0 80.0 4.45 .04 -0.1 0.1 3.43 .06 
Final total 201.1 205.7 4.10 .04 -0.1 0.0 2.1 .15 
Course total 846.4 872.5 8.24 0 -0.2 0.1 6.47 .01 

 
Table IV. Complete Academic Year Data 

Graded Event R1 R2 H p 
Exam 1 Total -0.2 0.1 8.87 0 
Exam 2 Total -0.2 0.0 11.67 0 
Final MC -0.1 0.0 4.44 .04 
Final SA -0.1 0.0 5.62 .02 
Final total -0.2 0.0 6.15 .01 
Course total -0.2 0.1 11.88 0 

 
The results of the analysis for the fall 2000 and spring 2001 semesters are 

summarized in Tables II and III, respectively, while the results of the analysis for the 
complete academic year are summarized in Table IV.  In each case, following the 
procedure for the Kruskal-Wallis test, student scores were ranked from highest to lowest, 
the rank values were summed, and the KW test performed to generate an H value.  H is 
then used to calculate a p-value. For the tables that follow: 

 
µ1  the mean score for Robotics students 
µ2  the mean for other students 
H  the H-value of the KW test 
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p  the p-value of the KW test  
R1, R2  the residuals from a linear-regression function used to remove the effects of 

GPA. 
 
In this context, the p-value is the probability that it would be an error to conclude that 

there is an effect on the exam score in question (i.e., the higher the p-value, the less 
evidence of a difference). The p-values less than .005 appear as 0 in the tables. Negative 
values for residuals indicate scores below what a linear function based on GPA would 
have predicted. 

For the fall 2000 semester, raw scores are available for both graded reviews, both the 
multiple choice and short answer portions of the final exam, and final course standing.  
As shown by the p-values in Table II, the raw scores of the robotics students are 
significantly different from those of other students on both portions and the total of the 
final exam, as well as the overall course standing.   

For the spring 2001 semester, raw scores are available for both the multiple choice 
and the short answer portions of both graded reviews and the final exam, as well as for 
final course standing.  There are significant differences between the robotics and the 
nonrobotics scores on the short answer portions and the overall scores of all three exams, 
as well as the final course standing, but not on the multiple choice portions of the exams.  
With the exception of the overall score on the final exam, the same differences are 
present in the GPA-adjusted scores. 

The raw scores from the fall 2000 semester are not directly comparable to those from 
the spring 2001 semester.  However, as explained in the Appendix, the GPA-adjusted 
scores from the two semesters are directly comparable.  Significant differences exist in all 
those scores. 

 
3.2 Controlling for Instructors 
While space precludes a detailed analysis of data broken down by individual instructors, 
we did have some instructors who taught both robotics and nonrobotics sections.   

One instructor taught sections of both the robotics and nonrobotics versions in the fall 
2000 semester.  There were significant differences between the raw scores of that 
instructor�s robotics and nonrobotics students on the second graded review and the 
multiple choice portion of the final exam.  Only the former difference remains in the 
GPA-adjusted scores. 

Two instructors taught sections of both the robotics and nonrobotics versions in the 
spring 2001 semester.  For one instructor, there were significant differences between the 
robotics and nonrobotics raw scores for the short answer portion of the final exam, the 
total score on the final exam, and the final course standing, but no significant differences  

 
Table V. Computer Science Majors 

 Fall 2000 Spring 2001 AY 2000-01 
Robotics students declaring CS major 0 2 2 
Other students declaring CS major 15 13 28 
Total 15 15 30 
c1 5 8 10 
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Table VI.  Computer Engineering Majors 
 Fall 2000 Spring 2001 AY 2000-01 
Robotics students declaring CE major 1 3 4 
Other students declaring CE major 4 6 10 
Total 5 9 14 
c1 3 6 6 
c2 < 0 0 0 
p-value 0.865 1.000 0.568 

 
Table VII Computer Science and Computer Engineering Majors 

 Fall 2000 Spring 2001 AY2000-01 
Robotics students declaring CS or 
CE major 

1 5 6 

Other students declaring CS or CE 
major 

19 19 38 

Total 20 24 44 
c1 6 12 14 
c2 < 0 3 4 
p-value 0.699 0.478 0.424 

 
 
in the GPA-adjusted scores.  For the other instructor, there were significant differences in 
the raw scores on the multiple choice portions of both graded reviews, but the only 
difference in the GPA-adjusted scores is on that portion of the second graded review.  
Our conclusion is that controlling for instructor variation reduces the observed negative 
effects of robots, but does not eliminate it. 
 
3.3 Field of Study 
We also attempted to determine the effect that being in a robotics section has on a 
student�s likelihood of declaring a major of either computer science or computer 
engineering.  The statistical test chosen for the analysis of this question is the Fisher-
Irwin test.  Like Kruskal-Wallis, Fisher-Irwin is used to determine whether or not two 
samples come from identical populations, but is considered the appropriate test when data 
has only two possible values (in this case declaring one of our target majors or not). 

The raw data is summarized by time period in Tables V, VI, and VII.  Table V shows 
data for computer science, Table VI for computer engineering, and Table VII for both. 

There are no statistically significant results for either the fall or the spring semester.  
Over the course of the complete academic year, the cadets in the robotics sections were 
slightly less likely to eventually declare the computer science major. 

4. ANALYSIS: SUBJECTIVE MEASURES 
In addition to the objective measures described previously, we also looked at subjective 
measures like student self-assessments of their learning, how students rated the course, 
and so forth.  We obtained quantitative subjective measures through course critique  
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Fig. 3. Student survey results. 
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Fig. 4. Focus group analysis:  Advantages of robots (fall semester). 
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FOCUS GROUP 1 
 

   

Unique 
 
 

Robots 
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Challenging 

Creative Hands-on Requires thinking Hands-on 

Interesting Front page Fun labs Creative teacher 

Robots Problem solving Good instructors Synergistic 

FOCUS GROUP 2    
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Thread Color Code Number of Occurrences 

Creative or unique  5 

Interesting or fun  4 

Problem solving  4 

Relevant, useful or applied  4 

Hands-on  3 

Related to EI  3 

Related to instructors  3 

Robots  3 

Thinking or challenging  3 

 
Note:   EI = Extra Instruction, one-on-one tutoring with a student and an instructor GR = Graded Review, a 

written in-class exam 
 

Fig. 5. Focus group analysis:  Advantages of robots (spring semester). 
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Availability Hard to work out 
of class 
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work on robots 

Not very many 
robots 

Time consuming Takes a lot of  
time outside of 
class 
 

Useless Not enough  
robots 

Books 

Amount of work 
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Major is 
Computer  
Science 
 

Pointless You get it or you 
don’t, no in 
between 

El far 

 Readings not 
Emphasized 
 

Time consuming Only spent one 
Period working  
on project 

Instructors in lab 
could not help 
with robots 
 

  
 

Unrealistic  Students to help 
hard to find 
 

  No focus 
 

 Wheels fall off 

  Break 
 

  

     
 # of responses    
 4 Workload and Time   
 3 Inconvenient to work with robots  
 3 Hard to get help   
 2 Lack of robots   
 2 Robots Break   
 2 Not relevant   
 2 Books and reading   

 

Fig. 6. Focus group analysis:  Disadvantages of robots (fall semester). 
 
 

surveys, distributed at the end of every semester as part of the Academy�s standard 
course evaluation protocol.   

While quantitative data was important, we were also interested in qualitative 
feedback.  To this end, we selected a few sections of our course, both with and without 
robotics, for special �focus group� sessions.  Focus group sessions at our institution are 
led by trained educational assessment specialists, who ask questions and lead 
brainstorming sessions to determine student perceptions of their classroom experience.  
To ensure that students respond honestly, instructors do not attend.  The sessions are 
recorded and transcribed, and then analyzed for common themes to pinpoint both 
strengths and weaknesses. 

The results of our student surveys were consistent with the data of the previous 
section.  As we see in Figure 3, on the four most significant survey questions where  
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FOCUS GROUP 1 
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FOCUS GROUP 3 
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Number of Occurrences Number of Occurrences Number of Occurrences 

4 4 4 

4 4 4 

3 3 3 

2 2 2 

2 2 2 
 

Fig. 7. Focus group analysis:  Disadvantages of robots (spring semester students were asked to rate  
 
 

course content, the average ratings for the nonrobotics sections were higher than those in 
the robotics classes.  The difference ranged from 2.2% for �relevance and usefulness� to 
7.6% for �instructor effectiveness.�  
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On the qualitative side, an analysis of the focus group transcripts revealed some 
important threads.  Figures 4 and 5 show a condensed summary of student brainstorming 
sessions on the perceived strengths of robot-based instruction in the fall and spring 
semesters.  We see that the perceived advantages of robots in the classroom were also felt 
by students.  Words like �interesting,� �fun,� �challenging,� and �relevant� kept 
recurring in the discussion.   

Unfortunately, brainstorming sessions on the weaknesses of robots revealed just how 
important the lack of a simulator and the corresponding reduction in reflective problem-
solving time was.   

Since we (and probably most institutions considering robots) could not afford to 
purchase kits for every student, and since the inventory control problems were painful to 
contemplate, we required all robots to remain in the labs.  While we tried to hold as many 
special laboratory sessions as we could, particularly before labs were due, in an 
environment like the Academy where student free time is at a minimum, this effectively 
meant that most students could work on their problems only during their assigned lab 
time.  Students were keenly aware of this, and saw it as a big disadvantage. 

When we look at Figures 6 and 7 we see that by far the largest concern is that students 
were not able to work on their programming assignments back in their rooms.  Note the 
frequent occurrence of comments like �hard to work on,� �time consuming,� and so on.  
The more typical complaints that might be expected when working with robots, such as 
logistical and mechanical issues, were far less significant.  This is in some sense 
encouraging, since the time constraint issues can be solved in software through the 
addition of a simulator. Solving serious mechanical or logistical issues inherent in the 
robots themselves would be much more difficult. 

5. CONCLUSIONS AND FUTURE WORK 
The most desirable goal for introducing robots into the computer science classroom is to 
improve student learning, so that students can then display evidence of improved learning 
on tests and problems.  Even if no such evidence is found, the case for robots might still 
be compelling if they improve student retention, attract more people to the discipline, and 
enhance the classroom experience. Clearly, these goals were not met in our experiment.   

Our results show worse results in the robotics vs the nonrobotics sections.  At least in 
our environment, the use of robotics deprives students of the opportunity to work on their 
code back in their rooms, on their own time, and to practice the write-run-debug feedback 
loop, which appears to be an important part of the learning process.  When we first 
conceived of this project two years ago, we wanted to deploy the software in the 
classroom quickly, and therefore made the conscious decision not to include a simulator 
in the first releases of Ada/Mindstorms.  Our hope was that the learning advantages of 
robots would outweigh the disadvantages of a restricted feedback loop for programming.  
Our results do not support this hypothesis. 

It may also be argued that, rather than provide a simulator, students should be allowed 
to take the robots back to their rooms.  Although this presents logistical difficulties in our 
environment, it may not at other institutions.  We strongly believe that any efforts to 
involve robots in teaching CS should permit reflective, out-of-lab, time to work on 
assignments.  In view of our results, we believe that students working with programming 
robots in traditional universities should be allowed to check out their equipment and take 
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it to their rooms if at all possible.  We will continue to explore this option at our 
institution as well. 

Instructor experience may also play a part.  Student feedback metrics improve with 
instructor experience. We collectively had several years teaching the �old� version of our 
computing course, with no more than one semester experience teaching the robotics 
sections.  While we were careful to work through all the labs, issue kits to all robotics 
instructors, and make sure all exercises were carefully worked through and understood 
before being issued to the students, it is difficult to believe we were completely 
successful in completely negating the lack of instructor experience with the robots as a 
factor in student learning.  We also have noted previously that, to some extent, 
controlling for instructor experience appears to mitigate the observed effects of robots on 
scores. 

We also note that our student population, while large, is not representative of the 
student population as a whole.  Most students are not subject to the time pressures of a 
military academy, nor are they required to take an introductory computer course that must 
use a high-level programming language.  We hope other researchers with different 
populations will attempt similar studies for comparison with ours. 

The next step in this research is to uncouple the effects of robotics from those of 
reduced access to the programming feedback loop by adding a simulator to 
Ada/Mindstorms.  Due to the enormous size of the design space (Which robots should we 
simulate?  What environment will they operate in?), this presents significant challenges.  
Based on the results we have seen, our goal is to produce a simulator that runs quickly, is 
easy to use, and reliably replicates the behavior of simple Mindstorm robots.  Hence, 
students can have a high degree of confidence that once their program works on their 
computer, it will work in a robot.  At the same time, we would like the simulator to 
function with different robot designs operating in different environments, to maximize 
the program�s usefulness to educators and to enhance the �fun factor.�  This work is 
currently in progress [Fagin 2003]. 

APPENDIX:  STATISTICAL TECHNIQUES  
This section briefly describes the statistical tests used in this research.  They are 
discussed in greater detail in Allen [1990]. 
 
A.1 Kruskal-Wallis Test    
The Kruskal-Wallis Test determines whether or not two or more sets of data are different 
enough to justify concluding that the differences should be attributed to something other 
than random variation.  Given k independent samples from k populations, it tests the null 
hypothesis  
 

H0: the samples are from identical populations  
 

against the alternative hypothesis 
 

H1: the populations are not identical.   
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In this sense it is similar to the well known t-test, but it is applicable whether or not the 
data are normally distributed. 

In brief, the test consists of ranking the data from all of the samples together, 
computing the total of the ranks Ri for each of the k samples, and then computing the 
statistic  
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H is well approximated by a chi-square distribution for sample sizes of at least 5.  Thus, 
the probability of the differences among the samples occurring randomly is P[χ2 > H], 
where χ2 is a chi-square random variable with k-1 degrees of freedom.  This probability is 
called the p-value of the test, and if it is less than α then the null hypothesis (that the 
samples are from identical populations) should be rejected.  In that case, the conclusion is 
that there is a difference between the populations, at the α level of significance. 

A.2 Fisher-Irwin Test    
The Fisher-Irwin Test, like Kruskal-Wallis, tests whether or not two samples come from 
identical populations.  It differs in that the data in the samples only have two possible 
values, i.e. the samples are collections of Bernoulli trials.  For this reason, the Fisher-
Irwin Test is called a two-sample Bernoulli test.  Such tests determine whether or not 
Bernoulli random variables sampled from two independent populations can be considered 
to have the same mean. 

(We note that it is a slight abuse of a common variety to assume that the students in 
the Robotics sections and in the non-Robotics sections are drawn from independent 
populations, because they come from the same student body and are mutually exclusive).   

Several alternative hypotheses are possible, but as used in this research, the Fisher-
Irwin test tests the null hypothesis  

 
H0: pX = pY  

against the alternative hypothesis  
 

H1: pX ≠ pY 
 
where pX and pY are the probabilities of success for the two populations.   

Procedurally, the first step in the test is to calculate the total number of successes k = 
kX + kY in the sample data, where kX and kY are the numbers of successes out of the n trials 
in the first sample and the m trials in the second, respectively.  The next step is to 
determine the critical region, which is set of values of kX that would be too improbable to 
be attributed to random variation.  For the alternative hypothesis stated above, this 
includes both values that are improbably large and values that are improbably small.  
This step is discussed in greater detail below, as is the determination of the p-value of the 
test.  The null hypothesis should be rejected if kX is in the critical region.  It should also 
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be rejected if the p-value is less than the specified level of significance α.  Deciding 
whether to accept or reject the null hypothesis is the last step. 

The critical region and the p-value for the test are both based on the hypergeometric 
distribution.  If the random variable X has a hypergeometric distribution with parameters 
n, k, and N, then 
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This probability is interpreted as the conditional probability of there being exactly kX 
successes out of the first n trials, given that there are exactly k successes in all N trials.   

Specifically, for the alternative hypothesis H1: pX > pY, the critical region is the largest 
upper tail of the distribution containing no more than α probability, i.e. 

 
( ) [ ]{ }αα ≤≥=> iXPiC | , 

 
and the p-value is [ ]XkXP ≥ .  Similarly, for the alternative hypothesis H1: pX < pY, the 
critical region is the largest lower tail of the distribution containing no more than α 
probability, i.e. 
 

( ) [ ]{ }αα ≤≤=< iXPiC |  

and the p-value is [ ]XkXP ≤ .  For the alternative hypothesis used in this research (H1: 

pX ≠ pY), the critical region is ( ) ( )22 αα <> ∪ CC  and the p-value is twice the smaller 
of the tail probabilities.  
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