

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002, Pages 1-18.

Quantitative Analysis of the Effects of Robots on
Introductory Computer Science Education

BARRY S. FAGIN
U.S. Air Force Academy
and
LAURENCE MERKLE
Rose-Hulman Institute of Technology

We report the results of a year-long experiment in the use of robots to teach computer science. Our data set
compares results from over 800 students on identical tests from both robotics and nonrobotics-based laboratory
sessions. We also examine the effectiveness of robots in encouraging students to select computer science or
computer engineering as a field of study.
Our results are negative: test scores were lower in the robotics sections than in the nonrobotics ones, nor did the
use of robots have any measurable effect on students� choice of discipline. We believe the most significant
factor that accounts for this is the lack of a simulator for our robotics programming system. Students in robotics
sections must run and debug their programs on robots during assigned lab times, and are therefore deprived of
both reflective time and the rapid compile-run-debug cycle outside of class that is an important part of the
learning process. We discuss this and other issues, and suggest directions for future work.
Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and Information Science
Education�Computer and information science education; I.2.9 [Artificial Intelligence]: Robotics�
Commercial robots and applications; Operator interfaces
General Terms: Experimentation, Languages, Measurement
Additional Key Words and Phrases: Lego Mindstorms, Ada, robots

1. INTRODUCTION
Educators have thought about robots in the classroom for as long as they have thought
about robots: their potential as teaching tools and as motivators has long been
recognized. For most of our lifetimes, however, economic constraints prohibited
extensive deployment of robots in all but the most rarefied environments. Initial attempts
to capitalize on robots as teaching tools had to rely on software models [Pattis 1981].

Within the past few years, however, improvements in performance and cost have
changed the picture dramatically. Robotic systems, both customized and mass-produced,
are now sufficiently affordable, powerful, and reliable to be deployed in the college and
even the high school classroom. Interest in the use of robots as educational tools has
exploded within the past few years [AAAI 2001; Beer and Chiel 2001; Flowers and
Gossett 2002; Harlan 2001; Klassner 2002; Wolz 2001]. We believe this trend will only
increase as robots continue to get better and cheaper.
__

Author�s Address: B.S. Fagin is with the U.S. Air Force Academy, USAFA, CO 80840. L. Merkle is with
Rose-Hulman Institute of Technology, 5500 Wabash Avenue,Terre Haute, IN 47803
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice,
the title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
© 2002 ACM 1531-4278/02/0900-0001 $5.00

2 • B.S. Fagin and L. Merkle

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

But while educators interested in robotics have developed important prototype
systems and reported on their deployment in the classroom, very little is known about
their effect on learning. The computer science education community has organized
panels and workshops on the subject to facilitate the exchange of ideas [AAAI 2001;
Congdon 2001], but quantitative studies that assess how robots affect learning are
missing from the literature.

We report one such study here. We were among the first institutions to deploy robots
in the classroom, so we have considerable interest in this question. The existence of a
core course at our institution that all students must take provides a large sample
population from which to draw conclusions, and the systematic use of databases for
student information and test scores provide us with solid, reliable data for analysis. In
the sections that follow, we present the basic parameters of the study, a statistical analysis
of the data, and comment on subjective feedback measures. We then present our
conclusions and discuss future work.

2. EXPERIMENTAL PARAMETERS
Our study analyzes data from the 2000-2001 academic year offerings of our core
computing course, required for all our students and normally taken in the freshman year.
This course was taught to 938 students in 48 sections of 15-20 students each. Nine of
these sections were designated as �robotics� sections, where we provided laboratory
instruction using Lego Mindstorms ® robots and the Ada/Mindstorms programming
environment [Fagin 2000b]. We tracked student performance on all exams, as well as
their rank in the course after grades were assigned. Additionally, our students declare a
major no later than the middle of their sophomore year, so we now have data on the
effectiveness of robots in encouraging the selection of computer science or computer
engineering as a field of study.

2.1 The Ada/Mindstorms 2.0 Programming Environment
A screen shot of the Ada/Mindstorms 2.0 programming environment is shown in Figure
1. It has an easy to use GUI, and runs on any Windows PC. It is available for free at
http://www.usafa.af.mil/dfcs/adamindstorms.htm.

The coding flow of the programming environment is shown in Figure 2. Programs
are written in an Ada subset plus an API of Mindstorms-specific function calls, and
compiled with the Ada/Mindstorms compiler, which is a fully validated Ada compiler,
with additional logic to check that the program uses only those constructs supported by
the Ada/Mindstorms subset. These constructs are necessarily much smaller than the full
Ada language, due to both Ada�s considerable expressive power and the hardware
limitations of the Lego Mindstorms platform.

After the user�s Ada program has been validated, it is translated into Dave Baum�s
NQC language [Baum 2002], a C-like language for Mindstorms programming. NQC
code is assembled into binary bytecodes and downloaded into the Lego Mindstorms RCX
module, the central component of the Mindstorms system. (For more information on
Ada/Mindstorms, see Fagin [2000a; 2000b; 2001; 2002].

Quantitative Analysis of the Effects of Robots on Introductory CS Education • 3

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

Fig. 1. Creating robot programs with Ada/Mindstorms 2.0.

Fig. 2. Ada/Mindstorms programming path.

Ada subset

Ada/Mindstorms API
Output_On(Output => Output_A)

if counter = 0 then

Ada compiler

ada2nqc
translator

NQC
Ada code

Validated Ada
code

NQC code

to RCX

Bundled with latest release
of AdaGIDE compiler

int COUNTER = 1;
task main()
{
INITIALIZE_ROBOT () ;

4 • B.S. Fagin and L. Merkle

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

2.2 Tested Computing Concepts and Methods of Assessment
Both the robotics and the nonrobotics sections were taught introductory programming
using Ada. Our core computing course contains six laboratory exercises, emphasizing
the following concepts:

lab 1: variables, constants, sequential control flow, procedures without
parameters
lab 2: terminal I/O (nonrobotics lab), procedures with input parameters
lab 3: condition-controlled iteration, selection
lab 4: count-controlled iteration, procedures with output parameters
lab 5: arrays
lab 6: file I/O (nonrobotics lab)

These concepts were taught in both the robotics and the nonrobotics sections, using
different programming assignments but reinforcing similar ideas. The exceptions were
part of lab 2 and lab 6. Since the I/O capabilities of the Mindstorms robot are extremely
primitive and files are not supported by the robotics environment, terminal and file I/O
were taught using the same conventional laboratory exercises for all students.

Students in the nonrobotics sections were also taught the concept of packages, the
Ada mechanism for separate compilation. Packages are not currently supported by
Ada/Mindstorms, and therefore we decided not to teach this concept in the robotics
sections.

The course concludes with a programming project that ties all the concepts together,
usually a game, in which students are allowed to work in teams. The game is typically
chosen so that a simple strategy is easy to construct, but a good one takes some thinking.
On the last day of class, programs compete against each other in a virtual tournament.
We attempted to make both the robotics and the nonrobotics sections as similar as
possible by assigning team-based projects built around a strategy. In the nonrobotics
sections, teams were given a basic programming environment for the game Othello in the
fall semester and Mancala in the spring semester, and competed against each other by
implementing strategies for making the next move, given a board configuration. In the
robotics sections, one of us developed a jousting game similar to Nim, where robots faced
each other on a path marked off with foil stripes and moved forward a certain number of
spaces, beaming their moves to their opponent using the RCX�s infrared port. The robot
that took the last available space is considered to have won the joust.

Students in this course could earn up to 1000 points, not counting extra credit, based
on the following scale:

labs 1-5 150 5 labs @ 30 points
lab 6 40
practica 160 30, 50, and 80 points
midterms 250 2 @ 125 points
final project 100
final exam 250
other 50

Quantitative Analysis of the Effects of Robots on Introductory CS Education • 5

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

Programming practica were in-class programming assignments that had to be com-
pleted in a specified time period.

Since the labs, practica, and final project were different for the robotics and
nonrobotics sections, we did not compare student performance on those exercises. Our
analysis is confined to midterm exam scores, final exam scores, and class rank at the end
of the semester.

Midterms and the final consisted of three sections: multiple choice, short answer, and
programming. For both robotics and nonrobotics classes, the multiple choice and short
answer portions of the test were the same. For the programming portions, only slight
modifications were made in a few instances to ensure that correct answers did not require
concepts that robotics students had not been exposed to (for example, packages). For the
vast majority of programming questions, we used identical problems.

3. ANALYSIS: OBJECTIVE MEASURES
This section describes the statistical analysis of our experimental data, along with the
results. The statistical techniques used are described in the Appendix.

3.1 Exam Performance
We wanted to measure the effect that a student in a robotics section has on test
performance. The analysis considers the effect on both raw exam scores and on residuals
after the effect of student GPA is removed via linear regression. This was done to guard
against the possibility that unequal distribution of student academic ability might affect
the results. The statistical test chosen for analysis is the Kruskal-Wallis H test.

Our results are unequivocally negative. Strictly speaking, the KW test is only used to
determine if the scores from the two populations are different. However, in every case
where a difference was detected, the scores in the robotics sections were worse. All of
these differences remained after attempts to compensate for the correletated effects of
GPA.

The relevant sample sizes are presented in Table I. Each semester, approximately 5%
of the students are excused from the final exam on the basis of their performance during
the semester. Those students are obviously excluded from the analysis of performance on
the final exam. They are also excluded from the analysis of overall performance on
exams, but they are included in the analysis of performance on the graded reviews.

Table I. Sample Sizes
Graded Events

Fall 2000 Spring 2001
Population

Graded
Reviews

Final Exam
and Course

Total

Graded
Reviews

Final Exam
and Course

Total
Robotics
Students 53 50 130 125

Non-Robotics
Students 444 417 311 292

6 • B.S. Fagin and L. Merkle

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

Table II. Fall 2000 Data
Raw scores GPA-adjusted scores

Graded Event µ1 µ2 H p R1 R2 H p
Exam 1 88.1 91.2 .72 .40 0.0 0.0 .25 .62
Exam 2 107.5 112.0 1.96 .16 -0.1 0.0 .64 .42
Final MC 109.4 114.8 3.79 .05 -0.3 0.0 2.93 .09
Final SA 77.4 83.8 6.02 .01 -0.2 0.0 3.73 .05
Final total 186.7 198.5 7.10 .01 -0.3 0.0 6.09 .01
Course total 764.6 802.7 4.14 .04 -0.2 0.0 3.84 .05

Table III. Spring 2001 Data

Raw scores GPA-adjusted scores
Graded
Event

µ1 µ2 H p R1 R2 H p

Exam 1 MC 44.9 45.5 .59 .44 0.0 0.0 .17 .68
Exam 1 SA 53.0 57.3 27.24 0 -0.4 0.2 24.98 0
Exam 1 Total 97.9 102.9 17.82 0 -0.3 0.1 16.74 0
Exam 2 MC 38.7 38.5 .003 .95 0.1 0.0 .33 .57
Exam 2 SA 54.2 57.4 7.25 .01 -0.2 0.1 5.71 .02
Exam 2 Total 92.9 95.9 4.76 .03 -0.1 0.0 3.06 .08
Final MC 124.1 125.8 1.77 .18 -0.1 0.0 .53 .47
Final SA 77.0 80.0 4.45 .04 -0.1 0.1 3.43 .06
Final total 201.1 205.7 4.10 .04 -0.1 0.0 2.1 .15
Course total 846.4 872.5 8.24 0 -0.2 0.1 6.47 .01

Table IV. Complete Academic Year Data

Graded Event R1 R2 H p
Exam 1 Total -0.2 0.1 8.87 0
Exam 2 Total -0.2 0.0 11.67 0
Final MC -0.1 0.0 4.44 .04
Final SA -0.1 0.0 5.62 .02
Final total -0.2 0.0 6.15 .01
Course total -0.2 0.1 11.88 0

The results of the analysis for the fall 2000 and spring 2001 semesters are

summarized in Tables II and III, respectively, while the results of the analysis for the
complete academic year are summarized in Table IV. In each case, following the
procedure for the Kruskal-Wallis test, student scores were ranked from highest to lowest,
the rank values were summed, and the KW test performed to generate an H value. H is
then used to calculate a p-value. For the tables that follow:

µ1 the mean score for Robotics students
µ2 the mean for other students
H the H-value of the KW test

Quantitative Analysis of the Effects of Robots on Introductory CS Education • 7

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

p the p-value of the KW test
R1, R2 the residuals from a linear-regression function used to remove the effects of

GPA.

In this context, the p-value is the probability that it would be an error to conclude that

there is an effect on the exam score in question (i.e., the higher the p-value, the less
evidence of a difference). The p-values less than .005 appear as 0 in the tables. Negative
values for residuals indicate scores below what a linear function based on GPA would
have predicted.

For the fall 2000 semester, raw scores are available for both graded reviews, both the
multiple choice and short answer portions of the final exam, and final course standing.
As shown by the p-values in Table II, the raw scores of the robotics students are
significantly different from those of other students on both portions and the total of the
final exam, as well as the overall course standing.

For the spring 2001 semester, raw scores are available for both the multiple choice
and the short answer portions of both graded reviews and the final exam, as well as for
final course standing. There are significant differences between the robotics and the
nonrobotics scores on the short answer portions and the overall scores of all three exams,
as well as the final course standing, but not on the multiple choice portions of the exams.
With the exception of the overall score on the final exam, the same differences are
present in the GPA-adjusted scores.

The raw scores from the fall 2000 semester are not directly comparable to those from
the spring 2001 semester. However, as explained in the Appendix, the GPA-adjusted
scores from the two semesters are directly comparable. Significant differences exist in all
those scores.

3.2 Controlling for Instructors
While space precludes a detailed analysis of data broken down by individual instructors,
we did have some instructors who taught both robotics and nonrobotics sections.

One instructor taught sections of both the robotics and nonrobotics versions in the fall
2000 semester. There were significant differences between the raw scores of that
instructor�s robotics and nonrobotics students on the second graded review and the
multiple choice portion of the final exam. Only the former difference remains in the
GPA-adjusted scores.

Two instructors taught sections of both the robotics and nonrobotics versions in the
spring 2001 semester. For one instructor, there were significant differences between the
robotics and nonrobotics raw scores for the short answer portion of the final exam, the
total score on the final exam, and the final course standing, but no significant differences

Table V. Computer Science Majors

 Fall 2000 Spring 2001 AY 2000-01
Robotics students declaring CS major 0 2 2
Other students declaring CS major 15 13 28
Total 15 15 30
c1 5 8 10

8 • B.S. Fagin and L. Merkle

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

Table VI. Computer Engineering Majors
 Fall 2000 Spring 2001 AY 2000-01
Robotics students declaring CE major 1 3 4
Other students declaring CE major 4 6 10
Total 5 9 14
c1 3 6 6
c2 < 0 0 0
p-value 0.865 1.000 0.568

Table VII Computer Science and Computer Engineering Majors

 Fall 2000 Spring 2001 AY2000-01
Robotics students declaring CS or
CE major

1 5 6

Other students declaring CS or CE
major

19 19 38

Total 20 24 44
c1 6 12 14
c2 < 0 3 4
p-value 0.699 0.478 0.424

in the GPA-adjusted scores. For the other instructor, there were significant differences in
the raw scores on the multiple choice portions of both graded reviews, but the only
difference in the GPA-adjusted scores is on that portion of the second graded review.
Our conclusion is that controlling for instructor variation reduces the observed negative
effects of robots, but does not eliminate it.

3.3 Field of Study
We also attempted to determine the effect that being in a robotics section has on a
student�s likelihood of declaring a major of either computer science or computer
engineering. The statistical test chosen for the analysis of this question is the Fisher-
Irwin test. Like Kruskal-Wallis, Fisher-Irwin is used to determine whether or not two
samples come from identical populations, but is considered the appropriate test when data
has only two possible values (in this case declaring one of our target majors or not).

The raw data is summarized by time period in Tables V, VI, and VII. Table V shows
data for computer science, Table VI for computer engineering, and Table VII for both.

There are no statistically significant results for either the fall or the spring semester.
Over the course of the complete academic year, the cadets in the robotics sections were
slightly less likely to eventually declare the computer science major.

4. ANALYSIS: SUBJECTIVE MEASURES
In addition to the objective measures described previously, we also looked at subjective
measures like student self-assessments of their learning, how students rated the course,
and so forth. We obtained quantitative subjective measures through course critique

Quantitative Analysis of the Effects of Robots on Introductory CS Education • 9

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

Student feedback, robotics vs
non-robotics sections

4.424.193.884.16 4.28
3.96

4.44 4.75

0.00

1.00

2.00

3.00

4.00

5.00

Course as a
whole

Relevance and
usefulness

Amount learned Instructor
effectiveness

robotics
non-robotics

Fig. 3. Student survey results.

Focus
Group 1

Focus
Group 1

Focus
Group 2

Focus
Group 2

Focus
Group 2

Made you want
to learn

Learn something
totally new

Visual Extra instruction
always available

Teamwork

No prior
Knowledge
Needed

Interesting

Problem solving Problem solving
skills

Use of Math

Stimulating Fun Practical Relevant

Plastic

 Challenging Experimentation Exposure to new
Things

Attention to
detail

 Interactive Magical More Interesting Batteries

 Legos Different

 Funny

 # of responses
 4 Fun
 3 New or Different
 2 Interesting
 2 Practical or Relevant
 2 Problem Solving
 2 Stimulated Learning

Fig. 4. Focus group analysis: Advantages of robots (fall semester).

10 • B.S. Fagin and L. Merkle

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

FOCUS GROUP 1

Unique

Robots

Relevant Mentally
Challenging

Creative Hands-on Requires thinking Hands-on

Interesting Front page Fun labs Creative teacher

Robots Problem solving Good instructors Synergistic

FOCUS GROUP 2

Organized Nice
Teacher

Learned about
computers

Great application to
real life computing

Challenging Interesting fun Easy to get EI Logical problem
solving skills

Useful Robots Worked with
applications

Creative

 Real fun Lots of computers

FOCUS GROUP 3

Helped us catch up on
our sleep every T-day

Like a leadership
reaction course-
problem solving

Problem solving EI “fun time”

Hands-on A change from other
courses

EI Instructor xxxxxxx

Legos Partial credit Stories

 Excitement

Thread Color Code Number of Occurrences

Creative or unique 5

Interesting or fun 4

Problem solving 4

Relevant, useful or applied 4

Hands-on 3

Related to EI 3

Related to instructors 3

Robots 3

Thinking or challenging 3

Note: EI = Extra Instruction, one-on-one tutoring with a student and an instructor GR = Graded Review, a

written in-class exam

Fig. 5. Focus group analysis: Advantages of robots (spring semester).

Quantitative Analysis of the Effects of Robots on Introductory CS Education • 11

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

FOCUS

GROUP 1

FOCUS

GROUP 1

FOCUS

GROUP 2

FOCUS

GROUP 2

FOCUS

GROUP 2

Availability Hard to work out
of class

Wasteful Had to go too far
work on robots

Not very many
robots

Time consuming Takes a lot of
time outside of
class

Useless Not enough
robots

Books

Amount of work

Irrelevant if
Major is
Computer
Science

Pointless You get it or you
don’t, no in
between

El far

 Readings not
Emphasized

Time consuming Only spent one
Period working
on project

Instructors in lab
could not help
with robots

Unrealistic Students to help
hard to find

 No focus

 Wheels fall off

 Break

 # of responses
 4 Workload and Time
 3 Inconvenient to work with robots
 3 Hard to get help
 2 Lack of robots
 2 Robots Break
 2 Not relevant
 2 Books and reading

Fig. 6. Focus group analysis: Disadvantages of robots (fall semester).

surveys, distributed at the end of every semester as part of the Academy�s standard
course evaluation protocol.

While quantitative data was important, we were also interested in qualitative
feedback. To this end, we selected a few sections of our course, both with and without
robotics, for special �focus group� sessions. Focus group sessions at our institution are
led by trained educational assessment specialists, who ask questions and lead
brainstorming sessions to determine student perceptions of their classroom experience.
To ensure that students respond honestly, instructors do not attend. The sessions are
recorded and transcribed, and then analyzed for common themes to pinpoint both
strengths and weaknesses.

The results of our student surveys were consistent with the data of the previous
section. As we see in Figure 3, on the four most significant survey questions where

12 • B.S. Fagin and L. Merkle

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

FOCUS GROUP 1

Uppers couldn’t help us Robotics focused
GRs

Couldn’t work on
robots in rooms

Books
Blue book-curtain,
ADA book

Felt isolated compared
to normal CS 110

More lab time Get rid of double
periods

Practicum

Can only use robots in
lab

Slacker lab
partners

ADA is a poor choice
of language

Time

FOCUS GROUP 2

GRs Hard to understand

Un-necessary Would have liked to
learn some Adagraph

Slow at times Time consuming
devotion

Boring Classroom lab instead
of separate

Textbooks Not practical unless
going into career

Didn’t teach concepts
well

FOCUS GROUP 3

Lectures may be
confusing

Not enough actual
lab instruction

Shouldn’t be a core
course

Error messages

Robots are limited to
only one room/lab

Unclear objectives More time to do labs Blue screen of death

Robots are limited to
motion

Hard to work on in
room

More collaboration on
labs

Multiple choice on
exams

Number of Occurrences Number of Occurrences Number of Occurrences

4 4 4

4 4 4

3 3 3

2 2 2

2 2 2

Fig. 7. Focus group analysis: Disadvantages of robots (spring semester students were asked to rate

course content, the average ratings for the nonrobotics sections were higher than those in
the robotics classes. The difference ranged from 2.2% for �relevance and usefulness� to
7.6% for �instructor effectiveness.�

Quantitative Analysis of the Effects of Robots on Introductory CS Education • 13

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

On the qualitative side, an analysis of the focus group transcripts revealed some
important threads. Figures 4 and 5 show a condensed summary of student brainstorming
sessions on the perceived strengths of robot-based instruction in the fall and spring
semesters. We see that the perceived advantages of robots in the classroom were also felt
by students. Words like �interesting,� �fun,� �challenging,� and �relevant� kept
recurring in the discussion.

Unfortunately, brainstorming sessions on the weaknesses of robots revealed just how
important the lack of a simulator and the corresponding reduction in reflective problem-
solving time was.

Since we (and probably most institutions considering robots) could not afford to
purchase kits for every student, and since the inventory control problems were painful to
contemplate, we required all robots to remain in the labs. While we tried to hold as many
special laboratory sessions as we could, particularly before labs were due, in an
environment like the Academy where student free time is at a minimum, this effectively
meant that most students could work on their problems only during their assigned lab
time. Students were keenly aware of this, and saw it as a big disadvantage.

When we look at Figures 6 and 7 we see that by far the largest concern is that students
were not able to work on their programming assignments back in their rooms. Note the
frequent occurrence of comments like �hard to work on,� �time consuming,� and so on.
The more typical complaints that might be expected when working with robots, such as
logistical and mechanical issues, were far less significant. This is in some sense
encouraging, since the time constraint issues can be solved in software through the
addition of a simulator. Solving serious mechanical or logistical issues inherent in the
robots themselves would be much more difficult.

5. CONCLUSIONS AND FUTURE WORK
The most desirable goal for introducing robots into the computer science classroom is to
improve student learning, so that students can then display evidence of improved learning
on tests and problems. Even if no such evidence is found, the case for robots might still
be compelling if they improve student retention, attract more people to the discipline, and
enhance the classroom experience. Clearly, these goals were not met in our experiment.

Our results show worse results in the robotics vs the nonrobotics sections. At least in
our environment, the use of robotics deprives students of the opportunity to work on their
code back in their rooms, on their own time, and to practice the write-run-debug feedback
loop, which appears to be an important part of the learning process. When we first
conceived of this project two years ago, we wanted to deploy the software in the
classroom quickly, and therefore made the conscious decision not to include a simulator
in the first releases of Ada/Mindstorms. Our hope was that the learning advantages of
robots would outweigh the disadvantages of a restricted feedback loop for programming.
Our results do not support this hypothesis.

It may also be argued that, rather than provide a simulator, students should be allowed
to take the robots back to their rooms. Although this presents logistical difficulties in our
environment, it may not at other institutions. We strongly believe that any efforts to
involve robots in teaching CS should permit reflective, out-of-lab, time to work on
assignments. In view of our results, we believe that students working with programming
robots in traditional universities should be allowed to check out their equipment and take

14 • B.S. Fagin and L. Merkle

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

it to their rooms if at all possible. We will continue to explore this option at our
institution as well.

Instructor experience may also play a part. Student feedback metrics improve with
instructor experience. We collectively had several years teaching the �old� version of our
computing course, with no more than one semester experience teaching the robotics
sections. While we were careful to work through all the labs, issue kits to all robotics
instructors, and make sure all exercises were carefully worked through and understood
before being issued to the students, it is difficult to believe we were completely
successful in completely negating the lack of instructor experience with the robots as a
factor in student learning. We also have noted previously that, to some extent,
controlling for instructor experience appears to mitigate the observed effects of robots on
scores.

We also note that our student population, while large, is not representative of the
student population as a whole. Most students are not subject to the time pressures of a
military academy, nor are they required to take an introductory computer course that must
use a high-level programming language. We hope other researchers with different
populations will attempt similar studies for comparison with ours.

The next step in this research is to uncouple the effects of robotics from those of
reduced access to the programming feedback loop by adding a simulator to
Ada/Mindstorms. Due to the enormous size of the design space (Which robots should we
simulate? What environment will they operate in?), this presents significant challenges.
Based on the results we have seen, our goal is to produce a simulator that runs quickly, is
easy to use, and reliably replicates the behavior of simple Mindstorm robots. Hence,
students can have a high degree of confidence that once their program works on their
computer, it will work in a robot. At the same time, we would like the simulator to
function with different robot designs operating in different environments, to maximize
the program�s usefulness to educators and to enhance the �fun factor.� This work is
currently in progress [Fagin 2003].

APPENDIX: STATISTICAL TECHNIQUES
This section briefly describes the statistical tests used in this research. They are
discussed in greater detail in Allen [1990].

A.1 Kruskal-Wallis Test
The Kruskal-Wallis Test determines whether or not two or more sets of data are different
enough to justify concluding that the differences should be attributed to something other
than random variation. Given k independent samples from k populations, it tests the null
hypothesis

H0: the samples are from identical populations

against the alternative hypothesis

H1: the populations are not identical.

Quantitative Analysis of the Effects of Robots on Introductory CS Education • 15

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

In this sense it is similar to the well known t-test, but it is applicable whether or not the
data are normally distributed.

In brief, the test consists of ranking the data from all of the samples together,
computing the total of the ranks Ri for each of the k samples, and then computing the
statistic

)1(3
)1(

12
1

2

+−

+

= ∑
=

n
n
R

nn
H

k

i i

i

H is well approximated by a chi-square distribution for sample sizes of at least 5. Thus,
the probability of the differences among the samples occurring randomly is P[χ2 > H],
where χ2 is a chi-square random variable with k-1 degrees of freedom. This probability is
called the p-value of the test, and if it is less than α then the null hypothesis (that the
samples are from identical populations) should be rejected. In that case, the conclusion is
that there is a difference between the populations, at the α level of significance.

A.2 Fisher-Irwin Test
The Fisher-Irwin Test, like Kruskal-Wallis, tests whether or not two samples come from
identical populations. It differs in that the data in the samples only have two possible
values, i.e. the samples are collections of Bernoulli trials. For this reason, the Fisher-
Irwin Test is called a two-sample Bernoulli test. Such tests determine whether or not
Bernoulli random variables sampled from two independent populations can be considered
to have the same mean.

(We note that it is a slight abuse of a common variety to assume that the students in
the Robotics sections and in the non-Robotics sections are drawn from independent
populations, because they come from the same student body and are mutually exclusive).

Several alternative hypotheses are possible, but as used in this research, the Fisher-
Irwin test tests the null hypothesis

H0: pX = pY

against the alternative hypothesis

H1: pX ≠ pY

where pX and pY are the probabilities of success for the two populations.

Procedurally, the first step in the test is to calculate the total number of successes k =
kX + kY in the sample data, where kX and kY are the numbers of successes out of the n trials
in the first sample and the m trials in the second, respectively. The next step is to
determine the critical region, which is set of values of kX that would be too improbable to
be attributed to random variation. For the alternative hypothesis stated above, this
includes both values that are improbably large and values that are improbably small.
This step is discussed in greater detail below, as is the determination of the p-value of the
test. The null hypothesis should be rejected if kX is in the critical region. It should also

16 • B.S. Fagin and L. Merkle

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

be rejected if the p-value is less than the specified level of significance α. Deciding
whether to accept or reject the null hypothesis is the last step.

The critical region and the p-value for the test are both based on the hypergeometric
distribution. If the random variable X has a hypergeometric distribution with parameters
n, k, and N, then

[]

−
−

==

k
N

kk
nN

k
n

kXP XX
X .

This probability is interpreted as the conditional probability of there being exactly kX
successes out of the first n trials, given that there are exactly k successes in all N trials.

Specifically, for the alternative hypothesis H1: pX > pY, the critical region is the largest
upper tail of the distribution containing no more than α probability, i.e.

() []{ }αα ≤≥=> iXPiC | ,

and the p-value is []XkXP ≥ . Similarly, for the alternative hypothesis H1: pX < pY, the
critical region is the largest lower tail of the distribution containing no more than α
probability, i.e.

() []{ }αα ≤≤=< iXPiC |

and the p-value is []XkXP ≤ . For the alternative hypothesis used in this research (H1:

pX ≠ pY), the critical region is () ()22 αα <> ∪ CC and the p-value is twice the smaller
of the tail probabilities.

ACKNOWLEDGEMENTS
This work was funded by the USAF Institute for Information Technology Applications,
whose support is gratefully acknowledged.

REFERENCES
AAAI 2001 Spring Symposium on Robotics and Education, March 2001, numerous authors.
ALLEN, A. 1990. Probability, Statistics, and Queuing Theory with Computer Science Applications, 2nd ed.,

Academic Press, San Diego, CA.
BAUM, D. 2002. The NQC Web site. Available at http://www.enteract.com/~dbaum/nqc.
BEER, R. AND CHIEL, H. 1999. Using autonomous robotics to teach science and engineering, Commun. ACM

42, 6 (June1999), 85-92.
CONGDON, C., FAGIN, B., GOLDWEBER, M., HWANG, D., AND KlASSNER, F. 2001. Experiences with robots in

the classroom, panel presented at the 32nd SIGCSE Technical Symposium on Computer Science Education.
FAGIN, B. 2000a. Using ada-based robotics to teach computer science . In Proceedings of the 5th International

Conference on Innovation and Technology in Computer Science Education (Helsinki, June 2000), 148-151.
Available at http://www.faginfamily.net/barry/Papers/ITICSEWeb/using_ada.htm.

FAGIN, B. 2000b. An ada interface for lego mindstorms. Ada Letters 20, 3, 20-40. Available at
http://www.faginfamily.net/barry/Papers/AdaLetters.htm.

Quantitative Analysis of the Effects of Robots on Introductory CS Education • 17

ACM Journal of Educational Resources in Computing, Vol. 2, No. 4, December 2002.

FAGIN, B. 2001. Teaching basic computer science concepts with robotics using ada/mindstorms 2.0. In
Proceedings of SIGADA �01 (Bloomington, MN, Oct. 2001), 73-78. Available at
http://www.acm.org/sigada/conf/sigada2001

FAGIN, B. 2003. Ada/Mindstorms 3.0: A computational environment for introductory robotics and
programming, IEEE Robotics and Automation. Special issue on robotics and education, to appear.

FLOWERS, T. AND GOSSETT, K. 2002. Teaching problem solving, computing, and information technology with
robots. Unpublished paper, project description available at
http://www.dean.usma.edu/dean/ComputingAtWestPoint/Robots.htm.

HARLAN, R. ET. AL. 2001. The khepera robot and the kRobot class: A platform for introducing robotics in the
undergraduate curriculum. In Proceedings of the 32nd SIGCSE Technical Symposium on Computer Science
Education (Charlotte, NC, Feb. 2001), 105-109.

KLASSNER, F. 2002. A case study of LEGO Mindstorms� suitability for artificial intelligence and robotics
courses at the college level. In Proceedings of the 33rd SIGCSE Technical Symposium on Computer
Science Education (Feb. 2002), 8-12.

PATTIS, P. 1981. Karel the Robot: A Gentle Introduction to the Art Of Programming, 2nd ed. John Wiley and
Sons,.

WOLZ, U. 2001. Teaching design and project management with lego RCX robots. In Proceedings of the 32nd
SIGCSE Technical Symposium on Computer Science Education (Charlotte, NC, Feb. 2001), 95-99.

Received May 2002; revised February 2003; accepted March 2003

