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Abstract

Evolutionary algorithms �EAs
 are stochas

tic� population
based algorithms inspired by
the natural processes of recombination� mu

tation� and selection� EAs are often em

ployed as optimum seeking techniques� A for

mal framework for EAs is proposed� in which
evolutionary operators are viewed as map

pings from parameter spaces to spaces of ran

dom functions� Formal de�nitions within this
framework capture the distinguishing charac

teristics of the classes of recombination� mu

tation� and selection operators� A speci�c
EA� the generalized fast messy genetic algo

rithm� is de�ned within the proposed frame

work�

� Introduction

Stochastic population
based algorithms inspired by re

combination� mutation� and selection processes are
evolutionary algorithms �EAs�� Well
known members
of this class include genetic algorithms �GAs
 ���� evo

lution strategies �ESs
 �		� 	�� and evolutionary pro

gramming �EP
 ���� B�ack �	� provides an excellent re

view of these three major EA paradigms� including a
historical perspective� B�ack and Schwefel ��� propose
a general speci�cation for EAs� which they re�ne for
each paradigm� The de�nitions of various mappings
appearing therein are quite broad� So much so that
they overlook essential operator characteristics� This
research develops formal de�nitions �Sections � and �

which capture these characteristics� Using these def

initions� Section � extends B�ack and Schwefel�s spec

i�cation� Finally� the proposed framework is used to
de�ne a novel EA� the generalized fast messy genetic
algorithm �Section �
�

� Representation

Associated with each EA is a non
empty set I� called
the individual space of the algorithm� When the EA is
used as an optimum seeking technique� each individual
a � I represents a candidate solution to the optimiza

tion problem at hand� The representation scheme is
formally de�ned by the decoding function�

De�nition � �Decoding function�� Let I be a
non�empty set� and f � Rn��R �the objective func

tion�� If D � I �� R

n is total� i�e� the domain of D
is all of I� then D is called a decoding function� �

The mappingD is not necessarily surjective� the range
of D determines the subset of Rn actually available for
exploration by the evolutionary algorithm�

The �tness of an individual a � I is an indication
of the quality of the candidate solution D�a
 � Rn�
The mapping which yields this indication is the �tness
function� It is the �tness function which the evolution

ary algorithm actually attempts to optimize�

De�nition � �Fitness function�� Let I be a non�
empty set� D � I �� Rn� f � Rn �� R� and Ts � R��

R �the �tness scaling function� Then �
�
� Ts � f �D is

called a �tness function� �

In this de�nition it is understood that the objective
function f is determined by the application� while the
speci�cation of the decoding functionD and the �tness
scaling function Ts are design issues�

Execution of an EA typically begins by randomly sam

pling with replacement from I� The resulting collec

tion is the initial population� denoted P ��
� More gen

erally� a population is a collection� P � fa�� � � � � a�g
of individuals ai � I� The number of individuals � in
the population is the population size�

�Populations are treated interchangeably as n�tuples of
individuals or multisets of individuals� as convenient�
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Following initialization� execution proceeds iteratively�
Each iteration consists of application of one or more
evolutionary operators� The combined e�ect of the
evolutionary operators applied in a particular genera�
tion t � N is to transform the current population P �t

into a new population P �t� 	
�

� Evolutionary Operators

B�ack and Schwefel describe evolutionary operators
�EOs
 as directly mapping populations into popula

tions� with the mapping being �controlled� by the pa

rameters of the operator� This research proposes a
more formal view of EOs as mappings from parameter
spaces to random functions ��� with values in the set of
population transformations� This view precisely iden

ti�es the relationships among the operator parameters
and the various mappings�

A population transformation �PT
 is any mapping
from populations to populations �see Figure 	
�

I�

sP �

T

I�
�

sP �

Figure 	� The PT T deterministically maps the parent
population P �of size �
 to the o�spring population P �

�of size ��
�

De�nition 	 �Population transformation�� Let
I be a non�empty set� and �� �� �Z� �the parent and
o�spring population sizes� respectively�� A mapping
T � I� �� I�

�

is called a population transformation�
If T �P 
 � P � then P is called a parent population and
P � is called an o�spring population� If � � ��� then
they are called simply the population size� �

The PT resulting from an EO often depends on the
outcome of a random experiment� thus motivating the
concept of a random PT �RPT
 �Figure �
� The set of
mappings from S� to S� is denoted T �S��S�
�

De�nition 
 �Random population transforma�
tion�� Let I be a non�empty set� � � Z�� and �
a set �the sample space�� A random function R �

� �� T
�
I��
S
���Z� I

��

�
is called a random popu


lation transformation� �

The distribution of PTs resulting from the application
of an EO depends on the operator parameters� i�e� an
EO maps its parameters to a RPT �Figure �
�
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Figure �� The RPT R maps the random event � to the
PT T � which maps parent populations of size � �which
is independent of �
 to o�spring populations of some
�xed size �� �Z� �which may depend on �
�

X
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Figure �� The EO X maps the exogenous parameter�s

� to the RPT R� The underlying sample space of R
is �� Each of the possible PTs acts on populations
of size �� The o�spring population size �� �Z� may
depend on � as well as the random event � � ��

De�nition � �Evolutionary operator�� Let I
be a non�empty set� � � Z�� Xa set �the parameter
space�� and � a set� A mapping

X �X�� T

�
��� T

�
�I�� �

���Z�

I�
�

�
A
�
A �	


is called an evolutionary operator� The set of evolu�
tionary operators in the form of Equation � is denoted
EVOP�I� ��X��
� �

The RPT X��
 is denoted X�� The PT X���
 is
also denoted X� to maintain consistency with the
notation of B�ack and Schwefel� except where confu

sion may arise� In particular� the o�spring population
�X���
��P 
 is denoted X��P 
� Finally� if X has no
parameters� i�e� X � EVOP�I� �� fg��
� then the o�

spring population is denoted X�P 
�

The speci�c EOs used are typically biologically in

spired� The guiding principle in their design is typ

ically loose analogy to Darwin�s principle of �survival
of the �ttest�� The most commonly used EOs are re�
combination� mutation� and selection�



Recombination operators are the most general of the
three� The distinguishing characteristic of recombina

tion operators is that at least some of the individuals in
the o�spring population may depend on more than one
individual in the parent population� The following def

inition re�ects this characteristic� Because of this� it is
more restrictive than the de�nition adopted by B�ack
and Schwefel� which admits any PT r � I� �� I�

�

where �� �� �Z��

De�nition � �Recombination operator�� Let
r � EVOP�I� ��X��
� If there exist P � I�� � � X�
and � � � such that at least one individual in the
o	spring population r��P 
 depends on more than one
individual of P then r is called a recombination oper

ator� �

In contrast to recombination operators� the distin

guishing feature of mutation operators is that each of
the individuals in the o�spring population depends on
at most one individual in the parent population�

De�nition � �Mutation operator�� Let m �
EVOP�I� ��X��
� If for every P � I�� every � �
X� and every � � �� each individual in the o	spring
population m��P 
 depends on at most one individual
of P then m is called a mutation operator� �

This de�nition of mutation is more general than B�ack
and Schwefel�s� which assumes that parent and o�

spring population sizes are equal�

The distinguishing characteristics of selection opera

tors are that every individual in the o�spring popula

tion is also a member of the parent population� and
that the PT depends on the �tnesses of the individu

als in the parent population� The following de�nition
re�ects these characteristics� in contrast to B�ack and
Schwefel�s� which admits any PT s � �I�

�

� I�
���
 ��

I��

De�nition � �Selection operator�� Let s �
EVOP�I� ��X� T �I�R
��
� If for every P � I�� ev�
ery � � X� and every �tness function � � I �� R� s
satis�es a � s������P 
 �� a � P � then s is called a
selection operator� �

� Algorithmic Speci�cation

The preceding de�nitions of the various types of evo

lutionary operators permit the following formal de�ni

tion of an evolutionary algorithm� which extends that
of B�ack and Schwefel ���� The de�nition is general
in the sense that essentially every EA in the literature
may be shown to satisfy the de�nition through suitable
choices of the individual space� population sizes� �t

ness function� termination criterion� evolutionary op


erators� and operator parameters� It is speci�c in the
sense that every algorithm which satis�es the de�ni

tion exhibits the essential characteristics typically as

sociated with EAs�

De�nition � �Evolutionary algorithm�� Let I be
a non�empty set �the individual space�� f��i�gi�Na se�

quence in Z� �the parent population sizes�� f���i�gi�N
a sequence in Z� �the o	spring population sizes��
� � I �� R a �tness function� � �

S�
i���I

�
i ��
ftrue�falseg �the termination criterion�� � �
ftrue�falseg� r a sequence fr�i�g of recombination

operators r�i� � X�i�
r �� T

�
��i�
r � T

�
I�

�i�
� I�

��i�
��

�

m a sequence fm�i�g of mutation operators m�i� �

X
�i�
m �� T

�
�
�i�
m � T

�
I�

��i�

� I�
��i�
��

� s a sequence

fs�i�g of selection operators s�i� � X�i�
s � T �I�R
 ��

T
�
��i�
s � T

��
I�

��i�����i�
�
� I�

�i���
��

� ��i�
r � X�i�

r �the

recombination parameters�� �
�i�
m �X

�i�
m �the mutation

parameters�� and �
�i�
s � X

�i�
s �the selection parame


ters�� Then the algorithm shown in Figure 
 is called
an evolutionary algorithm� �

t �� ��

initialize P ��
 �� fa���
� � � � � a���
g � I�
���
�

while ���fP ��
� � � � � P �t
g
 �� true
 do

recombine� P ��t
 �� r
�t�

�
�t�
r

�P �t

�

mutate� P ���t
 �� m
�t�

��t�
m

�P ��t

�

select�
if �

then P �t� 	
 �� s
�t�

���t�s ���
�P ���t

�

else P �t� 	
 �� s
�t�

��
�t�
s ���
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�
t �� t� 	�

od

Figure �� Outline of an Evolutionary Algorithm

This de�nition di�ers from B�ack and Schwefel�s in sev

eral ways� First� and most importantly� the population
sizes� operators� and parameters are all represented as
sequences� re�ecting the fact that certain evolutionary
algorithms use varying population sizes� use multiple
phases of execution in which di�erent operators are
applied� and vary their parameters over the course of
execution�

Another di�erence between the de�nitions is that in
Figure �� the termination condition � depends on
the set of populations fP ��
� � � � � P �t
g� Many evo




lutionary algorithms terminate after a �xed num

ber of generations �corresponding to a termination
criterion satisfying ��fP ��
� � � � � P �t
g
 � true 	�
card �fP ��
� � � � � P �t
g
 	 tf 
� or based on conditions
involving populations previous to the current genera

tion� Both de�nitions fail to include evolutionary algo

rithms which terminate based on conditions involving
the number of function evaluations performed�

Two further di�erences are notational� The variable
� is introduced to preserve B�ack and Schwefel�s ex

plicit representation of selection operators which act
on populations of size �� � �� as well as those which
act on populations of size ��� In B�ack and Schwefel�s
de�nition� selection acts on the population P ���t
 �Q�
where Q � ffg� P �t
g�

Finally� the �tness function is represented as a param

eter of the selection operator� Consequently� explicit
statement of the evaluation step is unnecessary�

� Generalized Fast Messy GAs

The formal framework proposed in Section � permits
precise speci�cation of novel evolutionary algorithms�
This section demonstrates this aspect of the frame

work� The proposed algorithm is an example of a
linkage
friendly genetic algorithm ���� and shares the
high
level structure and representation scheme �Sec

tion ��	
 of the fast messy genetic algorithm �fmGA

proposed by Goldberg� et al� � �� Consequently� it is
convenient to refer to the algorithm as the generalized
fast messy genetic algorithm �gfmGA��

In the gfmGA initialization phase� a competitive tem�
plate is selected and an initial population is randomly
generated� The gfmGA primordial phase uses the prob�
abilistic building block �ltering �BBF� �Section ���

and binary tournament selection �BTS� with proba�
bilistic thresholding �Section ���
 operators� Each is a
novel generalization of the corresponding fmGA oper

ator� The juxtapositional phase uses the cut�and�splice
operator �Section ���
� as well as the BTS with prob

abilistic thresholding operator�

��� Representation

Loci are represented explicitly and individuals are not
necessarily of uniform length�

De�nition �� �Linkage�friendly genetic algo�
rithm �lfGA� individual space�� Let A be a non�
empty set �the genic alphabet�� 
 � Z� �the nom


inal string length�� L
�
� f	� � � � � 
g �the loci�� and

o � R such that o 
 	 �the over�ow factor�� Then

I
�
�
Sbo��c
��	 �A � L
� �

Sbo��c
��	 �A

� � L�
 is called an
lfGA individual space over A� �

Each ai � A is an allele� each li � L is a locus �plural
loci
� and each ordered pair �ai� li
 is a gene� It is con

venient to de�ne the set of length�� non�overspeci�ed
individuals

I��

�
� f�a� l
 � ��a�� � � � � a�
� �l�� � � � � l�

 � I

� li � lj 	� i � jg �

��


An individual �a� l
 is fully speci�ed if each locus oc

curs exactly once� i�e� if ��i � L
�
!j � L
�lj � i��

The set of fully speci�ed individuals is thus IF
�
� I�

�

Given a fully speci�ed individual c � �b�m
 � IF �
referred to as a competitive template� the overlay map

ping associates every individual x � I �fully speci�ed
or otherwise
 with an 

vector of alleles�

De�nition �� �Overlay mapping�� Let I be an
lfGA individual space over the genic alphabet A with

nominal string length 
� and IF
�
� I�

 de�ned by

Equation �� The mapping " � I � IF �� A� such
that for each i � f	� � � � � 
g

�"��a� l
� �b�m

�i
�
��

aj � if j
�
� minfk � lk � ig exists

bj � where mj � i � if �k � lk �� i

is called the overlay mapping for I� �

The association of each individual x � I with a vec

tor of alleles via the overlay mapping may be thought
of as the �rst step in assigning a �tness to x� Subse

quent steps include mapping the vector of alleles to the
parameter space of the objective function� evaluation
of the objective function� and possibly �tness scaling�
The composition of these mappings is the lfGA �tness
function�

De�nition �� �Linkage�friendly genetic algo�
rithm �lfGA� �tness function�� Let I be an
lfGA individual space over the genic alphabet A with

nominal string length 
� IF
�
� I�

 de�ned by Equa�

tion �� " � I � IF �� A� the overlay mapping for I�
D � A� �� R

n� f � Rn �� R� Ts � R �� R� and

�
�
� Ts � f � D � " � I � IF �� R� Then ��x� c


denotes the �tness of x � I with respect to c � IF �
Furthermore� given c � IF de�ne �c � I �� R by

�c��

�
� ���� c
� Then �c is called an lfGA �tness

function for I� �

Of course� an lfGA �tness function �c may be writ

ten as the composition Ts � f � Dc � I �� R� where

Dc��

�
� D�"��� c

� Thus� lfGA �tness functions are

�tness functions in the sense of De�nition ��



��� Recombination

The cut�and�splice operator is a recombination oper

ator acting on non
uniform length individuals� other

wise similar to single
point crossover� It is convenient
to de�ne the cut
and
splice operator in terms of the
composition of distinct cut and splice operators�

A cut operator maps pairs of individuals �the parents

to �
tuples of individuals �the fragments
� For a �
�a�� � � � � a�
 � �A � L
�� the following de�nition de

notes by ai
j the fragment �ai� � � � � aj
 � �A�L
j�i���
where 	 � i � j � �� Some fragments may be trivial�
i�e� of length �� these are denoted fg�

De�nition �	 �Cut operator�� Let I be an lfGA

individual space� �
�
� ��� 	��� �

�
� �Xa� Xb� #Ya� #Yb
 �

U ��
� and � � R�� T ��� T �I�� I�

 an evolutionary
operator� If for every pc � ��� 	� �the cut probability��
every �a�b
 � �A�L
�a��A�L
�b � I� �the parents��

Ya
�
� d��a � 	
 � #Yae and Yb

�
� d��b � 	
 � #Ybe �the cut

points�� � satis�es Equation � �Figure 
� then � is
called a cut operator� �

�pc �a�b

�
��																


																�

�a�
Ya � aYa��
�a �b�
Yb�bYb��
�b
 �

if �a�b 	 �� Xa � pc� and Xb � pc
�a�
Ya � aYa��
�a �b� fg
 �

if �a 	 �� Xa � pc� and
either �b � � or Xb 	 pc

�a�b�
Yb�bYb��
�b � fg
 �

if �b 	 �� Xb � pc� and
either �a � � or Xa 	 pc

�a�b� fg� fg
 �

if either �a � � or Xa 	 pc� and
either �b � � or Xb 	 pc

��


Figure �� Cut operator

A splice operator maps �
tuples of individuals �the
fragments
 to n
tuples of individuals �the o	spring
�
where n � f�� �� �g� In the following de�nition�
if a � �a�� � � � � a�a
 � �A � L
�a and b �
�b�� � � � � b�b
 � �A � L
�b are fragments� then the o�

spring �a�� � � � � a�a � b�� � � � � b�b
 is denoted ab�

De�nition �
 �Splice operator�� Let I be an

lfGA individual space� �
�
� ��� 	��� �

�
� �Xab� Xbc�

Xcd
 � U ��
� and 
 � R �� T ��� T �I�� I� � I� �
I�

 an evolutionary operator� If for every ps � ��� 	�
�the splice probability�� and every �a�b� c�d
 � I� �the

fragments�� 
 satis�es Equation 
 �Figure �� then 
 is
called a splice operator� �


ps�a�b� c�d

�
��								


								�

�ab� cd
 � if Xab � ps and Xcd � ps
�ab� c�d
 � if Xab � ps and Xcd 	 ps
�a�bc�d
 � if Xab 	 ps and Xbc � ps
�a�b� cd
 �

if Xab 	 ps� Xbc 	 ps� and Xcd � ps
�a�b� c�d
 �

if Xab 	 ps� Xbc 	 ps� and Xcd 	 ps

��


Figure  � Splice operator

A local cut�and�splice operator is an evolutionary op

erator which produces population transformations ex

pressible as the composition of the population transfor

mations resulting from a cut operator� a permutation
of the resulting fragments �possibly depending on the
parameters and random events of the cut operator
�
and a splice operator�

De�nition �� �Local cut�and�splice operator��

Let I be an lfGA individual space� �
�
� ��� 	��� ��� 	���

�
�
� ��c� �s
 � U ��
� � a cut operator� � � R�

��� 	�� �� ��� 
 a splice operator� and r� � R� ��
T ��� T �I�� I� � I� � I�

 an evolutionary operator� If
r� satis�es

�r��pc�ps���
��a�b
 �

�
ps��s
�����pc��c
��a�b


��pc�	c������ � � � �

���pc��c
��a�b


��pc�	c�����
 �

then r� is called a local cut
and
splice operator� �

The permutation mapping � in De�nition 	� is ar

bitrary� Di�erent mappings correspond to di�erent
local cut
and
splice operators and result in di�erent
sets of potential o�spring� Goldberg� et al� ��� propose
a local cut
and
splice operator� for which the poten

tial sets of nontrivial o�spring� are illustrated in Fig

ure �� The permutation mapping of Goldberg�s local
cut
and
splice operator is intended to closely resemble
the behavior of single
point crossover for individuals
of length close to the nominal string length�

De�nition �� �Goldberg�s local cut�and�splice
operator�� Let I� �� �� �� 
� and r� be as in De��

�In practice� only nontrivial individuals are included in
the o�spring population�
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Figure �� Potential Nontrivial O�spring Resulting
From Goldberg�s Local Cut
and
splice Operator

nition �
� with � � R� ��� 	�� �� �� de�ned by

��pc� �c

�
��


�
�	� �� �� �
 � if Xa � pc and Xb � pc
�	� �� �� �
 � if Xa 	 pc and Xb 	 pc
�	� �� �� �
 � otherwise

�

Then r� is called Goldberg�s local cut
and
splice oper

ator� �

A cut�and�splice operator is an evolutionary operator
which extends a local cut
and
splice operator to op

erate on populations of arbitrary size �i�e� a macro

operator corresponding to a local cut
and
splice oper

ator
� In contrast to the situation with single
point
crossover� for which every pair of parents results in
exactly two o�spring� a local cut
and
splice operator
probabilistically results in between 	 and � o�spring
for each pair of parents� Because of this uncertainty�
it is convenient to recursively de�ne the population
produced by a cut
and
splice operator�

De�nition �� �Cut�and�splice operator�� Let
I be an lfGA individual space� � � Z�� �� � Z��

�
�
� d��

�

�
e� �

�
� �
� � ���� 	�� � ��� 	��
�

�

� �
�
�

����� � � � � �

� ���� � � � � ���

 � U ��
� r� a local cut�
and�splice operator� r � EVOP�I� ��R���
� and #r
satis�es Equation 
 �Figure ��� If for every pc �
��� 	�� every ps � ��� 	�� and every P � I�� r satis�
�es r�pc�ps��P 
 � #r�fg��� �� �� ���P� pc� ps� �
� then r is
called a cut
and
splice operator� If r� is Goldberg�s lo�
cal cut�and�splice operator� then r is called Goldberg�s
cut
and
splice operator� �

#r�P �� i	� i� j� k�P� pc� ps� �

�
��																				


																				�

P � � if k � �
#r�P �� i	� i	� j � 	� k�P� pc� ps� �
 �

if k 	 � and i � �
#r
�

P � � fP�j�i�g�
i	� i	� j � 	� k� 	�
P� pc� ps� �



�

if k 	 � and i � 	
P � � fQ�� � � � � Qkg �

if � � k � � and i 	 	
#r
�

P � � fQ�� � � � � QdimQg�
i	� i� dimQ� j� k� dimQ�
P� pc� ps� �



�

if k 	 � and i 	 	

��


where Q � �Q�� � � � � QdimQ
 denotes the o�spring
�r��pc�ps���i
��P�j�i�� P�j�i���
 of an invocation of r��

Figure �� Cut
and
splice operator

��	 Mutation

The gfmGA uses the probabilistic BBF operator�
While the deterministic BBF operator of the fmGA
deletes the same �xed number ��t� � ��t��� of genes
from each individual in generation t� the probabilis

tic BBF operator adds or deletes a random number of
genes� determined independently for each individual�

If ��t��� � ��t�� the deleted genes �equivalently� the
retained genes
 are drawn uniformly without replace

ment from the individual�s genes� If ��t��� 	 ��t�� new
loci are drawn uniformlywithout replacement from the
set of loci for which the individual does not already
contain a gene� New alleles are drawn uniformly and
independently from the genic alphabet� Thus� the op

erator preserves the non
overspeci�ed property of pri

mordial phase individuals� It is convenient to de�ne
the probabilistic BBF operator in terms of the gener

alized local BBF operator�

De�nition �� �Generalized local building block
�ltering operator�� Let I be an lfGA individual
space over genic alphabet A with nominal string length

�

S�
�
�

�
#� � T

�
f�� � � � � 
g�

��
i��

�i

�
� #��i
 � �i

�
� � 


�
�
� S� � S� � A�� �

�
� �#��� #��� ���� � � � � ��

 �

U ��
� sort�f��� � � � � ��g

�
� ��n� � � � � � �n�
 such that



�n� � � � � � �n� � m� � EVOP�I� 	�N��
�
and #m de�ned by Equation � �Figure ��� If for
every �f � f�� � � � � 
g �the o�spring individual
length�� and every a � ��a�� l�
� � � � � �a�� � l��

 �
I� m�

�f
�a
 � #m�a� ���� � � � � ��
� sort�f	� � � � � 
g �

fl�� � � � � l��g
� #����	
� #���
��	
� �f 
� then m� is a gen

eralized local building block �ltering operator� �

#m � ��a�� l�
� � � � � �a��� l��

�
���� � � � � ��
� ������� � � � � ��
� ��� ��� �f �

�
�

�						

						�

��a������ l�����
� � � � � �a����f �� l����f �


if �f � �	 �

��a������ l�����
� � � � � �a����f �� l����f �
�
����������� ���������
� � � � �
������f����� �����f����


if �f 	 �	 �

��


Figure �� Probabilistic BBF operator

The number of genes added or deleted from a parent
individual in generation t � f�� � � � � tp � 	g is deter

mined by the o�spring individual length ��t���� which

is a random variable chosen according to ��t���

�
�

Pr���t��� � �� where each ��t���
 is an exogenous
�ltering parameter� Because each ��t� is a probabil


ity density function of the discrete type� ��t���

�
�

	�
P�

��� �
�t���
� and the ��t���
�s are subject to the

constraints

�X
���

��t���
 � 	 and ��� � f	� � � � � 
g
���t���
 
 �� �

��


De�nition �� �Probabilistic building block �l�
tering operator�� Let I be an lfGA individual
space over genic alphabet A with nominal string length


� � � �� � Z�� S� de�ned by Equation �� �
�
�

�S� � S� � A�
�
�

� �
�
� ���� � � � � ���
 � U ��
� m� a

generalized local BBF operator� and m � ��� 	�� ��
T ��� T �I�

�

� �I��f 


��



 an evolutionary operator� If

for every �
�
� ���	
� � � � � ��


 satisfying Equations ��

every P � I�� and every i � f	� � � � � ��g� m satis�es

Pr
n
�m��P 
�i � �m�

�f
��i
��Pi


o
��

���f 
 � if 	 � �f � 


	�
P�

��� ���
 � if �f � �
�

then m is called a probabilistic building block �ltering
operator� �

��
 Selection

The gfmGAprimordial phase uses the BTS with prob

abilistic thresholding operator� Competition is re

stricted to compatible individuals� Individuals a �
I��a
 and b � I��b
 and sharing �c � $c�a�b

common de�ning loci are compatible with probability
��t���c��a� �b
� where each ��t���c��a� �b
 is an exoge

nous thresholding parameter�

De�nition �� �Binary tournament selection
with probabilistic thresholding operator and ��
nite shu�e size nsh�� Let I be a non�empty set�

 �Z�� � �Z�� �� �Z�� nsh �Z� �the shu%e size��

�
�
� �f	� � � � � �gnsh
�

�

� ��� 	�nsh��
�

�

�
�
� ���	�	
� � � � � �nsh�	

� � � � �

��	���
� � � � � �nsh��
�
� X
 � U ��
 �

s � EVOP�I� �� T �I�� ��� 	�
 � T �I�R
��
� and j �
f	� � � � � ��g � T �I�� ��� 	�
�� f�� � � � � nshg de�ned by

j�i� �

�
�

�

�

� � if ��k
�Xik 	 ��P	��i�� P	k�i�
�
minfk � Xik � ��P	��i�� P	k�i�
g �

otherwise �

If for every � � I� �� ��� 	� �the threshold mapping��
every �tness function � � I �� R� and every popula�
tion P � I�� s satis�es

�s������P 
�i ��
P	��i� � if ��P	��i�
 
 ��P	j�i����i�


P	j�i����i� � otherwise �

then s is called a binary tournament selection with
thresholding operator� �

��� Algorithmic Speci�cation

The preceding sections describe the novel operators
used by the gfmGA� This section speci�es the gfmGA
in the formal framework of Sections � and �� The
speci�cation� facilitated by the framework de�ned in
Section �� is concise and unambiguous�

De�nition �� �Generalized fast messy genetic
algorithm�� Let I be an lfGA individual space over
the genic alphabet f�� 	g with nominal string length

 and over�ow factor o� I��
 de�ned by Equation ��
k � f	� � � � � 
g �the building block size�� tf �Z

� �the
�nal generation�� tp � f�� � � � � tfg �the �nal primordial

phase generation�� ��	�
�
� 
 � k �the initial individ


ual length�� � a sequence f��t�g
tp
t�	 � ��� 	�� satisfy�

ing Equations � �the �ltering parameters�� � � ��� 	�



�the probability of selection error�� z
 � R such that
Z � N ��� 	
 �� Pr�Z 
 z
� � 	 � �� �� � R� �the
maximum inverse signal
to
noise ratio per subfunction

to be detected�� � � ��
�
� ������k��

���k��� �z�
�
��
�
�
k

�
� 	
�k

�the population size�� c � IF
�
� I�

 �the compet


itive template
� �c � I �� R is an lfGA �tness
function� � �

S�
i���I

�
i �� ftrue�falseg �the ter�
mination criterion� such that ��fP ��
� � � � � P �t
g
 �
true 	� card �fP ��
� � � � � P �t
g
 	 tf � r a se�
quence fr�t�g of Goldberg�s cut�and�splice operators

r�t� � R� �� T
�
��t�
r � T

�
I�

�t�
� I�

�t�
��

� m a sequence

fm�t�g of evolutionary operators� for � � t � tp�

m�t� � ��� 	�� �� T
�
�
�t�
m � T

�
I�

�t�

� I�
�t�
��

a probabilis�

tic BBF operator� for tp � t � tf � m�t� an identity
evolutionary operator� s a sequence fs�t�g of BTS with
probabilistic thresholding operators s�t� � T �I�� ��� 	�
�

T �I�R
 �� T
�
�
�t�
s � T

�
I�

�t�

� I�
��t�
��

� �
�t�
m

�
� ��t� for

� � t � tp �the �ltering parameters�� p
�t�
c � p

�t�
s

�
� �

for � � t � tp� �
�t�
r

�
� �p

�t�
c � p

�t�
s 
 � R� for � � t �

tf �the cut
and
splice parameters�� and � a sequence
f��t�g of threshold mappings ��t� � I� �� ��� 	�� Then
the algorithm shown in Figure 
 is called a generalized
fast messy genetic algorithm� �

Building on the recommendation of Goldberg� et al�
regarding the mGA ���� the algorithm may be applied
iteratively for � � k � kmax� The objective of iteration
k is to identify an order
k optimal individual� given
an order
�k � 	
 optimal competitive template c� The
optimality condition on c for the second iteration �k �
�
 is order
	� which may be satis�ed e&ciently by hill

climbing in I�

�

� Conclusions and Recommendations

The concepts developed in this research include pop

ulation transformations� random population transfor

mations� and general evolutionary operators� as well
as recombination� mutation� and selection operators�
The development results in a general yet precise for

mal framework for the class of evolutionary algorithms
�EAs
� The generalized fast messy genetic algorithm
is de�ned in the context of this framework� demon

strating the usefulness of the framework in the precise
speci�cation of novel EAs�

Although it has not been done here� the framework
may be used to prove relationships between various
EAs� For example� it may be used to prove that certain
EAs are equivalent� or that one EA is a special case of
another�
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