In Thomas Back, editor, Proceedings of the Seventh International

Conference on Genetic Algorithms, San Mateo, CA: Morgan Kauffman, 1997

A Random Function Based Framework for Evolutionary Algorithms

Laurence D. Merkle
Center for Plasma Theory and Computation
3550 Aberdeen Ave. SE
Phillips Laboratory
Kirtland AFB, NM 87117

Abstract

Evolutionary algorithms (EAs) are stochas-
tic, population-based algorithms inspired by
the natural processes of recombination, mu-
tation, and selection. EAs are often em-
ployed as optimum seeking techniques. A for-
mal framework for EAs is proposed, in which
evolutionary operators are viewed as map-
pings from parameter spaces to spaces of ran-
dom functions. Formal definitions within this
framework capture the distinguishing charac-
teristics of the classes of recombination, mu-
tation, and selection operators. A specific
EA, the generalized fast messy genetic algo-
rithm, is defined within the proposed frame-
work.

1 Introduction

Stochastic population-based algorithms inspired by re-
combination, mutation, and selection processes are
evolutionary algorithms (EAs). Well-known members
of this class include genetic algorithms (GAs) [8], evo-
lution strategies (ESs) [11, 12] and evolutionary pro-
gramming (EP) [4]. Béck [1] provides an excellent re-
view of these three major EA paradigms, including a
historical perspective. Back and Schwefel [2] propose
a general specification for EAs; which they refine for
each paradigm. The definitions of various mappings
appearing therein are quite broad. So much so that
they overlook essential operator characteristics. This
research develops formal definitions (Sections 2 and 3)
which capture these characteristics. Using these def-
initions, Section 4 extends Back and Schwefel’s spec-
ification. Finally, the proposed framework is used to
define a novel EA, the generalized fast messy genetic
algorithm (Section 5).

Gary B. Lamont
Dept. of Electrical and Computer Engineering
Graduate School of Engineering
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

2 Representation

Associated with each EA is a non-empty set I, called
the individual space of the algorithm. When the EA is
used as an optimum seeking technique, each individual
a € | represents a candidate solution to the optimiza-
tion problem at hand. The representation scheme is
formally defined by the decoding function.

Definition 1 (Decoding function): Let I be a
non-empty set, and f : R"—R (the objective func-
tion). If D : I — R" is total, i.e. the domain of D
1s all of I, then D 1s called a decoding function. a

The mapping D is not necessarily surjective; the range
of D determines the subset of R” actually available for
exploration by the evolutionary algorithm.

The fitness of an individual a € [is an indication
of the quality of the candidate solution D(a) € R™.
The mapping which yields this indication is the fitness
function. It is the fitness function which the evolution-
ary algorithm actually attempts to optimize.

Definition 2 (Fitness function): Let I be a non-
emptyset, D1 — R" f:R" — R, and Ty : R —
R (the fitness scaling function. Then @ 2 TsofoDis
called a fitness function. i

In this definition it is understood that the objective
function f 1s determined by the application, while the
specification of the decoding function D and the fitness
scaling function 7T are design issues.

Execution of an EA typically begins by randomly sam-
pling with replacement from /. The resulting collec-
tion is the initial population, denoted P(0). More gen-
erally, a population is a collection! P = {ay,...,a,}
of individuals a; € I. The number of individuals g in
the population is the population size.

'Populations are treated interchangeably as n-tuples of
individuals or multisets of individuals, as convenient.

Following initialization, execution proceeds iteratively.
Each iteration consists of application of one or more
evolutionary operators. The combined effect of the
evolutionary operators applied in a particular genera-
tiont € N is to transform the current population P(¢)
into a new population P(t + 1).

3 Evolutionary Operators

Back and Schwefel describe evolutionary operators
(EOs) as directly mapping populations into popula-
tions, with the mapping being “controlled” by the pa-
rameters of the operator. This research proposes a
more formal view of EOs as mappings from parameter
spaces to random functions [3] with values in the set of
population transformations. This view precisely iden-
tifies the relationships among the operator parameters
and the various mappings.

A population transformation (PT) is any mapping
from populations to populations (see Figure 1).

T

- ™

Figure 1: The PT T deterministically maps the parent
population P (of size y) to the offspring population P’
(of size p').

Definition 3 (Population transformation): Let
I be a non-empty set, and p, ' € Z* (the parent and
offspring population sizes, respectively). A mapping
T:I% — I s called a population transformation.
If T(P) = P’ then P is called a parent population and
P’ is called an offspring population. If p = p’, then
they are called sitmply the population size. a

The PT resulting from an EO often depends on the
outcome of a random experiment, thus motivating the
concept of a random PT (RPT) (Figure 2). The set of
mappings from 8; to Sz is denoted T(S1, Sa).

Definition 4 (Random population transforma-
tion): Let I be a non-emply set, p € Z+, and Q
a set (the sample space). A random function R :
Q — T(I“,UN,EZJr I“I) s called a random popu-
lation transformation. ad
The distribution of PTs resulting from the application

of an EO depends on the operator parameters, i.e. an
EO maps its parameters to a RPT (Figure 3).

w > T

T [1™, U I
Q n'ent

Figure 2: The RPT R maps the random event w to the
PT T, which maps parent populations of size g (which
is independent of w) to offspring populations of some
fixed size p/ € Z* (which may depend on w).

o —X -

R
TloT | | 1™
wELT

Figure 3: The EO X maps the exogenous parameter(s)
O to the RPT R. The underlying sample space of R
is €2. Each of the possible PTs acts on populations
of size u. The offspring population size p’ € ZT may
depend on O as well as the random event w € Q.

Definition 5 (Evolutionary operator): Let [
be a non-empty set, p € Z*, X a set (the parameter
space), and Q@ a set. A mapping

x:x—TloT|r | 1 (1)
WELT

1s called an evolutionary operator. The set of evolu-
tionary operators in the form of Equation 1 ts denoted

EVOP(I, 1, X,Q). m|
The RPT X(O©) is denoted Xg. The PT Xg(w) is

also denoted Xg to maintain consistency with the
notation of Back and Schwefel, except where confu-
sion may arise. In particular, the offspring population
[Xo(w)](P) is denoted Xe(P). Finally, if X has no
parameters, i.e. X € EVOP (I, pu,{},€), then the off-
spring population is denoted X (P).

The specific EOs used are typically biologically in-
spired. The guiding principle in their design is typ-
ically loose analogy to Darwin’s principle of “survival
of the fittest.” The most commonly used EOs are re-
combination, mutation, and selection.

Recombination operators are the most general of the
three. The distinguishing characteristic of recombina-
tion operators is that at least some of the individuals in
the offspring population may depend on more than one
individual in the parent population. The following def-
inition reflects this characteristic. Because of this, it 1s
more restrictive than the definition adopted by Back

and Schwefel, which admits any PT r : I* — I
where u, p/ € Z%.
Definition 6 (Recombination operator): Let

r € EVOP(I,u,X,Q). If there exist P € I*, © € X,
and w € § such that at least one wndividual in the
offspring population re (P) depends on more than one
individual of P then r 1s called a recombination oper-
ator. O

In contrast to recombination operators, the distin-
guishing feature of mutation operators is that each of
the individuals in the offspring population depends on
at most one individual in the parent population.

Definition 7 (Mutation operator): Lel m €
EVOP(I, 1, X,Q). If for every P € I", every © €
X, and every w € Q, each individual in the offspring
population me (P) depends on at most one individual
of P then m s called a mutation operator. a

This definition of mutation is more general than Back
and Schwefel’s; which assumes that parent and off-
spring population sizes are equal.

The distinguishing characteristics of selection opera-
tors are that every individual in the offspring popula-
tion is also a member of the parent population, and
that the PT depends on the fitnesses of the individu-
als in the parent population. The following definition
reflects these characteristics, in contrast to Back and
Schwefel’s, which admits any PT s : (I“I U I“I‘l'“) —
I+,

Definition 8 (Selection operator): Let s €
EVOP(I,pu, X x T(I,R), Q). If for every P € I*, ev-
ery © € X, and every fitness function ® : I — R, s
satisfies a € s(@,¢)(P) = a € P, then s is called a
selection operator. a

4 Algorithmic Specification

The preceding definitions of the various types of evo-
lutionary operators permit the following formal defini-
tion of an evolutionary algorithm, which extends that
of Back and Schwefel [2]. The definition is general
in the sense that essentially every EA in the literature
may be shown to satisfy the definition through suitable
choices of the individual space, population sizes, fit-
ness function, termination criterion, evolutionary op-

erators, and operator parameters. It is specific in the
sense that every algorithm which satisfies the defini-
tion exhibits the essential characteristics typically as-
sociated with EAs.

Definition 9 (Evolutionary algorithm): Let I be
a non-empty set (the individual space), {p Y ien a se-
quence in Z* (the parent population sizes), {ﬂ/(l)}iEN
a sequence in Z% (the offspring population sizes),
® : I — R a fitness function, v : |J;2,(I*)" —
{true,false} (the termination criterion), x €
{true,false}, r a sequence {r)} of recombination

operators r(1) - Xg«i) — T(QE«“,T(I““),I“IM)),
m a sequence {m(i)} of mutation operators m()

X%) — T(Q%),T(I“I(l),ﬁl(l))), s a sequence
{sDY} of selection operators s(*) : X x TI,R) —
(@07 (1), 1)), 0l & 1 (the
recombination parameters }, @%) = X%) (the mutation

parameters), and Hgi) € Xgi) (the selection parame-
ters). Then the algorithm shown in Figure { is called
an evolutionary algorithm. ad

t:=0;
initialize P(0) := {a1(0),...,a,(0)} €]u(o);
while («({P(0), .. .,P(t)(}t) # true) do

mutate: P"(t) := m(t()t)(P’(t));
select:
if
then P(t+1) := s(t)(
else P(t+1) := SE
fi
t=t+1;
od

0 o (P"(0):
(P u P

Figure 4: Outline of an Evolutionary Algorithm

This definition differs from Back and Schwefel’s in sev-
eral ways. First, and most importantly, the population
sizes, operators, and parameters are all represented as
sequences, reflecting the fact that certain evolutionary
algorithms use varying population sizes, use multiple
phases of execution in which different operators are
applied, and vary their parameters over the course of
execution.

Another difference between the definitions i1s that in
Figure 4, the termination condition ¢ depends on
the set of populations {P(0),...,P(¢)}. Many evo-

lutionary algorithms terminate after a fixed num-
ber of generations (corresponding to a termination
criterion satisfying «({P(0),..., P(t)}) = true <—
card ({P(0),...,P(t)}) > t7), or based on conditions
involving populations previous to the current genera-
tion. Both definitions fail to include evolutionary algo-
rithms which terminate based on conditions involving
the number of function evaluations performed.

Two further differences are notational. The variable
x 1s introduced to preserve Back and Schwefel’s ex-
plicit representation of selection operators which act
on populations of size p’ + pu, as well as those which
act on populations of size p’. In Back and Schwefel’s
definition, selection acts on the population P () U @Q,

where @ € {{}, P(1)}.

Finally, the fitness function is represented as a param-
eter of the selection operator. Consequently, explicit
statement of the evaluation step is unnecessary.

5 Generalized Fast Messy GAs

The formal framework proposed in Section 4 permits
precise specification of novel evolutionary algorithms.
This section demonstrates this aspect of the frame-
work. The proposed algorithm is an example of a
linkage-friendly genetic algorithm [9], and shares the
high-level structure and representation scheme (Sec-
tion 5.1) of the fast messy genetic algorithm (fmGA)
proposed by Goldberg, et al. [6]. Consequently, it is
convenient to refer to the algorithm as the generalized
fast messy genetic algorithm (gfmGA).

In the gfmGA initialization phase, a competitive tem-
plate is selected and an initial population is randomly
generated. The gfmGA primordial phase uses the prob-
abilistic building block filtering (BBF) (Section 5.3)
and binary tournament selection (BTS) with proba-
bilistic thresholding (Section 5.4) operators. Each is a
novel generalization of the corresponding fmGA oper-
ator. The juxtapositional phase uses the cut-and-splice
operator (Section 5.2), as well as the BTS with prob-
abilistic thresholding operator.

5.1 Representation

Loci are represented explicitly and individuals are not
necessarily of uniform length.

Definition 10 (Linkage-friendly genetic algo-
rithm (IfGA) individual space): Let A be a non-
empty set (the genic alphabet), ¢ € Z% (the nom-
inal string length), £ 2 {1,...,¢} (the loci), and
o € R such that o > 1 (the overflow factor). Then

1= E\ZZ(JJ (A x L) ~ UE\O:ZOJ (A* x L) is called an
IfGA individual space over A. a

Each a; € A is an allele, each I; € L is a locus (plural
loci), and each ordered pair (a;,l;) is a gene. Tt is con-
venient to define the set of length-A non-overspecified
individuals

IN 2 {al) = ((an...,a), (1, ..
ZliIlj<:>in} .

b))el (2)

An individual (a,1) is fully specified if each locus oc-
curs exactly once, ie. if (Vi € £)(3lj € L)[l; =).

The set of fully specified individuals is thus Ig 2 I(f).
Given a fully specified individual ¢ = (b,m) € I,
referred to as a competitive template, the overlay map-
ping associates every individual x € I (fully specified
or otherwise) with an £-vector of alleles.

Definition 11 (Overlay mapping): Let I be an
IfGA individual space over the genic alphabet A with
nominal string length {, and Ip = I(¢) defined by
Equation 2. The mapping I' : I x Ip — A" such
that for each i € {1,...,¢£}

[[((a,1), (b,m))); =

a; , ifj 2 min{k : [y = i} ewists
by , where my; =1 , ifVk:lp #£1

15 called the overlay mapping for I. a

The association of each individual x € I with a vec-
tor of alleles via the overlay mapping may be thought
of as the first step in assigning a fitness to x. Subse-
quent steps include mapping the vector of alleles to the
parameter space of the objective function, evaluation
of the objective function, and possibly fitness scaling.
The composition of these mappings is the IfGA fitness
function.

Definition 12 (Linkage-friendly genetic algo-
rithm (fGA) fitness function): Let I be an
IfGA individual space over the genic alphabet A with
nominal string length £, I 2 I(¢) defined by Fqua-
tion 2, T : I x Ip — A* the overlay mapping for I,
D A" — R fRY S R, T, : R — R, and
®ET,ofoDol :IxIp — RB. Then ®(x,c)
denotes the fitness of x € [with respect to ¢ € Ip.
Furthermore, gwen ¢ € Ip define &, : I — R by
D, (") 2 ®(-,¢). Then . is called an IfGA fitness
function for I. a

Of course, an IfGA fitness function ®, may be writ-

ten as the composition 75 o f o D. : I —> R, where
De(") 2 D(T(-,c)). Thus, IfGA fitness functions are

fitness functions in the sense of Definition 2.

5.2 Recombination

The cut-and-splice operator is a recombination oper-
ator acting on non-uniform length individuals, other-
wise similar to single-point crossover. It is convenient
to define the cut-and-splice operator in terms of the
composition of distinct cut and splice operators.

A cut operator maps pairs of individuals (the parents)
to 4-tuples of individuals (the fragments). For a =
(ai,...,ax) € (A x L£)*, the following definition de-
notes by a; ; the fragment (a;, ..., a;) € (Ax L£)7 71+
where 1 < ¢ < 7 < A. Some fragments may be trivial,
i.e. of length 0; these are denoted {}.

Definition 13 (Cut operator): Let I be an IfGA

individual space, 2 2 [0,1]%, w 2 (Xa,Xb,Ya,Yb) ~
U(Q), and k : R — T(Q,T(I%, 1)) an evolutionary
operator. If for every p. € [0,1] (the cut probability),
every (a,b) € (Ax L) e x (Ax L) C I? (the parents),

Vi 2 [(Ma—1)-Ya] and Yy 2 [(As — 1) - V3] (the cut
points), k satisfies Equation 3 (Figure 5) then & is
called a cut operator. a

(>

ijc (aab)
(a1v,,av, 410, b1y, byy41,)
if Aade > 0, Xo <pe, and X < p
(aliya ; aYa-l-lZ)\a ; b’ {}) ;
if Aa >0, X, <pe, and
etther \p = 0 or Xp > pe
(aa blIYba be+13>\b’ {}))
if A >0, Xy <pe, and
etther Ay =0 or Xy > pe
(a,b,{1L{}) ,
if either Ay =0 or X4 > pe, and
etther \p = 0 or Xp > pe

(3)

Figure 5: Cut operator

A splice operator maps 4-tuples of individuals (the
fragments) to n-tuples of individuals (the offspring),
where n € {2,3,4}. In the following definition,
if a = (a,...,ax,) € (A x L£)* and b =
(by,...,bx,) € (A x L)* are fragments, then the off-
spring (ay,...,ax,,b1,...,by,) is denoted ab.

Definition 14 (Splice operator): Let I be an
IfGA indiwidual space, 2 2 [0,1]3, w 2 (Xap, Xbe,
Xea) ~ U(Q), and ¢ : R — T(Q,TUIH 12U TP U
I*)) an evolutionary operator. If for every ps € [0,1]
(the splice probability), and every (a,b, ¢, d) € I* (the

fragments), ¢ satisfies Equation 4 (Figure 6) then (is
called a splice operator. a

¢.(ab c,d) 2
(aba Cd)) ZfXab S Ps and Xcd S Ps
(ab,c,d) ,if Xop < ps and Xeq > ps
(a,be,d) ,if Xgp > ps and Xpe < ps
(a,b,ed)

ZfXab > Ps; Xbc > Ps, and Xcd S Ds
(a,b,c,d)

ZfXab > Ps; Xbc > Ps, and Xcd > Ps

(4)

Figure 6: Splice operator

A local cut-and-splice operator is an evolutionary op-
erator which produces population transformations ex-
pressible as the composition of the population transfor-
mations resulting from a cut operator, a permutation
of the resulting fragments (possibly depending on the
parameters and random events of the cut operator),
and a splice operator.

Definition 15 (Local cut-and-splice operator):
Let I be an IfGA individual space, 2 [0,1]* x [0,1]3,

w 2 (we,ws) ~ U(R), &k a cut operator, o : R x
[0,1]* — 74, ¢ a splice operator, and r' : R? —
T(QT (2, 17U 13U IY)) an evolutionary operator. If
r' satisfies

[(peps) (W)](a,b) =
(G (W) (([Bp. (we) (@, D))o (pe wol(1)s - - -
(lkpe (@)@, D))o (pewe1(4)

then ' is called a local cut-and-splice operator. a

The permutation mapping ¢ in Definition 15 is ar-
bitrary. Different mappings correspond to different
local cut-and-splice operators and result in different
sets of potential offspring. Goldberg, et al. [7] propose
a local cut-and-splice operator, for which the poten-
tial sets of nontrivial offspring? are illustrated in Fig-
ure 7. The permutation mapping of Goldberg’s local
cut-and-splice operator is intended to closely resemble
the behavior of single-point crossover for individuals
of length close to the nominal string length.

Definition 16 (Goldberg’s local cut-and-splice
operator): Let I, Q, w, k, {, and 7' be as in Defi-

2In practice, only nontrivial individuals are included in
the offspring population.

Parents
I —
[—]

Potential Sets of Nontrivial Offspring

[s
[N
) N
)
.)

Parents Cut

Both

] [T
[
T

First

]| T [
T
777 .

Second

1| I [—]
777

Neither

Figure 7: Potential Nontrivial Offspring Resulting
From Goldberg’s Local Cut-and-splice Operator

nition 15, with o : R x [0,1]* — 74 defined by

A
U(pCawc) —
(1,4,3,2) , if Xoq < pc and X, < pe
(1,2,3,4) , if Xo > pe and Xy > pe
(1,3,2,4) , otherwise

Then 7' is called Goldberg’s local cut-and-splice oper-
ator. O

A cut-and-splice operator is an evolutionary operator
which extends a local cut-and-splice operator to op-
erate on populations of arbitrary size (i.e. a macro-
operator corresponding to a local cut-and-splice oper-
ator). In contrast to the situation with single-point
crossover, for which every pair of parents results in
exactly two offspring, a local cut-and-splice operator
probabilistically results in between 1 and 4 offspring
for each pair of parents. Because of this uncertainty,
it is convenient to recursively define the population
produced by a cut-and-splice operator.

Definition 17 (Cut-and-splice operator): Let

I be an IfGA individual space, p € Zt, u' € Zt,

€2 [, Q2 afx (0,1 x 0,1, w 2

(o1, ... 0¢), (w1, ...,wpu)) ~ U(Q), v a local cut-
and-splice operator, r € EVOP(I,u,R? Q), and
satisfies Equation 5 (Figure 8). If for every p. €
[0,1], every ps € [0,1], and every P € I*, r salis-
fies v(p p) (P) = #({}; 11, 11, &, ' Py pe, ps,w), then 1 is
called a cut-and-splice operator. If r' is Goldberg’s lo-
cal cut-and-splice operator, then r is called Goldberg’s
cut-and-splice operator. a

f(P/;io,i,j,k;P,pcapsaw)é

P ifk=0

#(P'5d0,40,5 — 1,k; P, pe, ps,w)

ifk>0andi=20

72(P/U{Poj(i)};
io,io,j—l,k’—l;

P, pe,ps,w),
fk>0andi=1
PlU{Qla"'an})
HfOo<k<4dandi>1
P PU{Q1,...,Qdimql;

10,1 —dimQ, 7,k — dim Q;

P, pe, ps,w)

ifk>0andi>1
(5)

where Q = (@1, ..., Qaim @) denotes the offspring

[rzpc,ps) (wi)l(Ps, (i), Po,(i—1)) of an invocation of 7.

Figure 8: Cut-and-splice operator

5.3 Mutation

The gfmGA uses the probabilistic BBF operator.
While the deterministic BBF operator of the fmGA
deletes the same fixed number A() — A1) of genes
from each individual in generation ¢, the probabilis-
tic BBF operator adds or deletes a random number of
genes, determined independently for each individual.

If A+ < A the deleted genes (equivalently, the
retained genes) are drawn uniformly without replace-
ment from the individual’s genes. If AT > X(®) pew
loci are drawn uniformly without replacement from the
set of loci for which the individual does not already
contain a gene. New alleles are drawn uniformly and
independently from the genic alphabet. Thus, the op-
erator preserves the non-overspecified property of pri-
mordial phase individuals. It 1s convenient to define
the probabilistic BBF operator in terms of the gener-
alized local BBF operator.

Definition 18 (Generalized local building block
filtering operator): Let I be an IfGA individual
space over genic alphabet A with nominal string length

4

?

S 2 {&ET({O,...,E},Um) 20 em} , (6)

Q28 x8 x A, w

U(Q), sort({4i,...,0:})

aaﬁ)) ~
,Bny) such that

(&1,5’2,(0[1,...

(Brys- -

> (>

< Pay, mo€ EVOP(I1,N,Q),
If for

Bn, < ...
and m defined by Equation 7 (Figure 9).

every Ay € {0,...,¢} (the offspring individual
length), and every a = ((a1,l1),...,(ar,,lx,)) €
1, mg\f(a) = m(a,(ag,...,ap),s0rt({1,... . {} —
{h, .. 001, 61(Xo), 2(£— o), Ap), then m' is a gen-
eralized local building block filtering operator. ad
m [((alall)a~~~a(a>\oal>\u))’
(ala"'aaﬁ)a(6)\04—1""’65)’0-1’0-2’Af]
(a0, (1) Loy (1))s - -+ (Ao, (0g) s lon ()
it Ay < Ao,

(>

((aal(l)alal(l)), cey (ao-l()‘f)’lo-l(Af))’
(a02(1)+>\0a 602(1)4-)\0), R

(Qou(A7=r0)s Boa(rs=ra)))
i > Ao

Figure 9: Probabilistic BBF operator

The number of genes added or deleted from a parent
individual in generation t € {0,...,t, — 1} is deter-

mined by the offspring individual length A(+1) | which
is a random variable chosen according to ()()) 2

Pr]At+D) = A] where each ¢()()\) is an exogenous
filtering parameter. Because each ¥(®) is a probabil-
ity density function of the discrete type, () (0) 2
1-— Z§:1 P (N), and the () (\)’s are subject to the

constraints

S vl <vland (YA€{L... . nwPA) >0].
a=1
(8)

Definition 19 (Probabilistic building block fil-
tering operator): Let I be an IfGA indwidual
space over genic alphabet A with nominal string length
£ w = p € Zt, S defined by Equation 6, 2
(S % 8 x A w 2 (Wi, ywp) ~ U(Q), m' a
generalized local BBF operator, and m : [0,1]" —
T(Q,T(I“I,(I(/\f))ul)) an evolutionary operator. If

for every 1 2 (¢(1),...,¢(0)) satisfying Equations 8,
every P € I*, and every i € {1,..., '}, m satisfies
Pr{[my (P)]; = [mh, ()] (P) } =
{1/)(/\1‘) CfL <Ay <H
L= 0o v(h) L if Ay =0 ’

then m 1s called a probabilistic building block filtering
operator. O

5.4 Selection

The gfmGA primordial phase uses the BTS with prob-
abilistic thresholding operator. Competition is re-
stricted to compatible individuals. Individuals a €
I(As) and b € I(M\) and sharing A, = Ac(a,b)
common defining loci are compatible with probability
H(t)(/\c; Aas Ab), Where each H(t)(/\c; Aay Ap) 18 an exoge-

nous thresholding parameter.

Definition 20 (Binary tournament selection
with probabilistic thresholding operator and fi-
nite shuffle size ngp): Let I be a non-emply set,
LeZT, peZ*, W € Z*r, ng, € Zt (the shuffle size),

Q2 ({1, p}rer)t x [0, 1]renxs’,

(wo(1), .- wn., (1)),
(wolk'), - wn., (W), X) ~U(Q)

s € EVOP(I, pu, T(I%,[0,1]) x T(I,R),Q), and j :
{1, W} x T(I%,]0,1]) — {0, ..., nsn} defined by

0, of (VE)[Xik > 0(Pug(i), Puoy(n))]
min{k : Xy < 0(Pogy, Pun)}

otherwise .

A
w =

[

i(i,0)

If for every 6 : I* — [0,1] (the threshold mapping),
every fitness function ® : I — R, and every popula-
tion P € I*, s satisfies

[5(6,)(P)]i =

ng(i) ; qu)(Pwu(l)) Z q)(PWj(z,o)(i))
ij(,,o)(i) , otherwise

then s s called a binary tournament selection with
thresholding operator. ad

5.5 Algorithmic Specification

The preceding sections describe the novel operators
used by the gfmGA. This section specifies the gfmGA
in the formal framework of Sections 2 and 3. The
specification, facilitated by the framework defined in
Section 4, is concise and unambiguous.

Definition 21 (Generalized fast messy genetic
algorithm): Let I be an [fGA individual space over
the genic alphabet {0,1} with nominal string length
£ and overflow factor o, I(A\) defined by Equation 2,
k € {1,...,¢} (the building block size), t; € ZT (the
final generation), ¢, € {0,...,¢;} (the final primordial
phase generation), A(") Sk (the initial individ-
ual length), ¢ a sequence {1/)(”}1”:0 C [0,1]° satisfy-
ing FBquations 8 (the filtering parameters), o € [0, 1]

(the probability of selection error), z, € R such that
Z ~ N(0,1) = Pr[Z > z,] = 1 —a, 8% € RT (the
mazimum inverse signal-to-noise ratio per subfunction

to be detected), 1 = 1/ 2 Zé(f__kz)’;)?ziﬁz(%] — 1)2*

(the population size), ¢ € Ip 2 I(¢) (the compet-
itive template), ®, : I — R is an IfGA fitness
function, ¢ = |J;2, (I*) —> {true false} (the ter-
mination criterion) such that ({P(0),...,P(t)}) =
true <= card({P(0),...,P@t)}) > tf, r a se-
quence {r(t)} of Goldberg’s cut-and-splice operators

P R2 5T (QE«”,T (I“(t),fu(t))), m a sequence
{m®Y} of evolutionary operators, for 0 < t < tp,
m® :[0,1)f — T (Q%),T (I“(t) , I“(t))) a probabilis-

tic BBF operator, for 1, < t < t;, m®) an identity
evolutionary operator, s a sequence {s(t)} of BTS with
probabilistic thresholding operators s T(I%,]0,1]) x

T R) — 7 (2, 7 (17, 177)), 0l 2A0 for

0 <t < t, (the filtering parameters), pﬁt) = pgt) =

for 0 <t <t,, O 2 P ply € B2 for0 < t <
t¢ (the cut-and-splice parameters), and 6 a sequence
{60} of threshold mappings 6% - 1> — [0,1]. Then
the algorithm shown in Figure 4 is called a generalized
fast messy genetic algorithm. ad

Building on the recommendation of Goldberg, et al.
regarding the mGA [7], the algorithm may be applied
iteratively for 2 < k < k4. The objective of iteration
k is to identify an order-k optimal individual, given
an order-(k — 1) optimal competitive template c. The
optimality condition on ¢ for the second iteration (k =
2) is order-1, which may be satisfied efficiently by hill-
climbing in I(¢).

6 Conclusions and Recommendations

The concepts developed in this research include pop-
ulation transformations, random population transfor-
mations, and general evolutionary operators, as well
as recombination, mutation, and selection operators.
The development results in a general yet precise for-
mal framework for the class of evolutionary algorithms
(EAs). The generalized fast messy genetic algorithm
is defined in the context of this framework, demon-
strating the usefulness of the framework in the precise
specification of novel EAs.

Although it has not been done here, the framework
may be used to prove relationships between various
EAs. For example, it may be used to prove that certain
EAs are equivalent, or that one EA is a special case of
another.

References

[1] Thomas Back. Fvolutionary Algorithms in Theory
and Practice. Oxford University Press, New York,
1996.

[2] Thomas Biack and Hans-Paul Schwefel. An
overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation, 1(1):1-

23, 1993.

[3] A. Blanc-Lapierre and R. Fortet. Theory of Ran-
dom Functions. Gordon and Breach, New York,

1965.

[4] L. J. Fogel, A. J. Owens, and M. J. Walsh. Ar-
tificial Intelligence Through Simulated Evolution.
Wiley Publishing, New York, 1966.

[6] Stephanie Forrest, editor. Proceedings of the Fifth
International Conference on Genetic Algorithms,
San Mateo CA, July 1993. Morgan Kaufmann
Publishers, Inc.

[6] David E. Goldberg, Kalyanmoy Deb, Hillol Kar-
gupta, and Georges Harik. Rapid, accurate op-
timization of difficult problems using fast messy
genetic algorithms. In Forrest [5], pages 56-64.

[7] David E. Goldberg, B. Korb, and K. Deb. Messy
genetic algorithms: Motivation, analysis, and first

results. Complex Systems, 3:493-530, 1989.

[8] John H. Holland. Adaptation in Natural and Arti-
ficial Systems. MIT Press, Cambridge, MA | First
MIT Press edition, 1992.

[9] Laurence D. Merkle. Analysis of Linkage-Friendly
Genetic Algorithms. PhD thesis, Graduate School
of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH 45433, Decem-
ber 1996.

[10] Gregory J. E. Rawlins, editor. Foundations of Ge-
netic Algorithms. Morgan Kaufmann, San Mateo,

CA, 1991.

[11] Ingo Rechenberg. Euolutionsstratrategie: Op-
timierung Technischer Systeme nach Prinzip-
ten der Biologischen FEuvolution.
Holzboog, Stuttgart, 1973.

Frommann-

[12] Hans-Paul Schwefel. Numerische Optimierung
von Computer-Modellan mittels der Evolution-
sstrategie. Wiley, New York, 1981.

