In E. Deaton et al., eds., Applied Computing 1994: Proceedings of the 1994 Symposium on Applied
Computing, New York : The Association for Computing Machinery, 1994.

AN INITIAL ANALYSIS OF DATA PARALLELISM IN THE FAST MESSY
GENETIC ALGORITHM

Laurence D. Merkle and Gary B. Lamont
Air Force Institute of Technology

Keywords

Data Parallelism, Optimization, Genetic Algorithms

Abstract

Genetic algorithms (GAs) are highly parallelizable algorithms,
inspired by Darwinian theories of evolution and survival of the
fittest, which are used most frequently as function optimizers.
The messy GA [4, 5, 6] makes use of partially enumerative ini-
tialization (PEI) and tournament selection, with competitions
restricted to similar individuals. The fast messy GA replaces
PEI with Probabilistically Complete Initialization and build-
ing block filtering, and increases the threshold for similarity
determinations [7]. T'wo algorithmic design approaches to par-
allelization of the fast messy GA are presented. One uses inde-
pendent subpopulations throughout the execution, while the
other uses recombines subpopulations following the primordial
phase. Solution quality and execution time are examined the-
oretically and experimentally against a fully deceptive func-
tion. Experiments are performed on an Intel Paragon parallel
supercomputer.

Introduction

The genetic algorithm (GA) has its inspiration in processes of
evolution and natural selection [9]. Substantial empirical data
exists which suggests that the GA is well suited for optimiza-
tion of some classes of functions (e.g. see DeJong [2]). One

*Sponsored by the Air Force Office of Scientific Research and the Air
Force Materiel Command’s Electronic Systems Center

class for which the GA is known to be less well suited is that
of deceptive functions [14]. The messy GA is designed specif-
ically to address the limitations of the simple GA associated
with functions of bounded deception [4, 5, 6].

The practical application of the messy GA islimited by its very
large initial population size and corresponding long execution
times. In order to overcome these limitations, Goldberg, et.
al. [7] propose several modifications to the original messy GA.
The modified algorithm is referred to as the fast messy GA.

This paper examines two parallel fast messy GA designs, both
of which exploit the data parallelism present in the fast messy
GA. The designs are presented and examined theoretically,
and their performance against a difficult test problem is com-
pared experimentally.

Messy Genetic Algorithms

Motivation for the messy GA arises from viewing the objec-
tive (or fitness) function f(z) as the sum of m independent
subfunctions fl(xl), each defined on the same number of loci
k, where k is the estimated level of deception present in the
most deceptive subfunction. A building block is a set of genes
which fully specify the independent variable of some subfunc-
tion. We define a highly fit building block (HFBB) to be the
building block (assumed unique) which optimizes the corre-
sponding subfunction. Thus the (unique) string containing
only HFBB’s optimizes the objective function.

The messy GA consists of an initialization, a primordial, and
a juztapositional phase. Its improved ability to solve deceptive
problems stems from the focus on increasing the proportion of
HFBB’s in the population before applying recombinative op-
erators. As originally proposed, this is accomplished throught
the use of partially enumerative initialization (PEI) and tour-
nament selection.

Original Messy GA

PEI results in a population consisting of all possible partial
solutions defined over k loci. Thus, each building block is

represented exactly once, although not every string contains
a building block, since the loci over which a string is defined
may correspond to different subfunctions. For an application
in which each string contains ¢ genes, and each gene has C
possible alleles, the initial population contains

N:kc<£) (1)

solutions. For even modest values of k this is significantly
larger than a typical simple GA population size. For exam-
ple, for a problem using a binary representation with £ = 50
and k = 5, the initial population contains 6.78 x 107 individ-
uals. Typical simple GA population sizes are in the tens to
thousands.

Tournament selection is then used in the primordial phase to
reduce the population size by eliminating less fit partial so-
lutions. Competition is limited to those partial solutions for
which the number of common defining loci is greater than the
expected value. The shuffle size parameter specifies the max-
imum number of individuals examined in searching for a com-
patible mate. A locally optimal solution, called the compet:-
tive template, is used to “fill in the gaps” in partially specified
solutions to allow their evaluation and subsequent selection.

The juxtapositional phase is similar to the simple GA in its
use of recombinative operators. Standard crossover is replaced
by cut-and-splice, which is a one-point crossover operating on
variable length strings. Splice and bitwise cut probabilities
are specified, and are normally chosen to promote rapid string
growth from % to ¢ [4].

Fast Messy GA

In order to reduce the size of the messy GA initial population
and the execution time of the initialization and primordial
phases; Goldberg, et. al. propose three modifications to the
original algorithm: use of Probabilistically Complete Initial-
ization (PCI) in place of PEIL use of building block filtering,
and more conservative thresholding in tournament selection

[7].

The objective of PCI is to ensure that each HFBB has an ex-
pected number of copies in the initial population sufficient to
overcome sampling noise. Each individual in the PCI popula-
tion is defined at £' = £ — k loci, which are selected randomly
without replacement (it is assumed that & < ¢). After ac-
counting for noise, the required population size is

Z/ 2 52 k
N = szaﬁ (m - 1)2 (2)
(Z/_k)

where £, ', k, and m have been defined previously, « is a pa-
rameter specifying the probability of selection error between
two competing building blocks, P[Z > za] = 1 — a where Z

is a standard normal random variable, and 8° is a parame-
ter specifying the maximum inverse signal-to-noise ratio per
subfunction to be detected.

The fast messy GA uses tournament selection and building
block filtering (BBF) to enrich the population in the primor-
dial phase. The effect of several iterations of tournament selec-
tion is to eliminate nearly all of the individuals in the popula-
tion which contain fewer HFBB’s, while increasing the number
of copies of individuals which contain more. BBF then reduces
the number of defining loci for each individual by randomly
deleting some number of genes. In the process it disrupts
many but not all of the HFBB’s. Some individuals contain-
ing HFBB’s remain to receive additional copies in subsequent
iterations of tournament selection.

For any particular problem, some HFBB’s may contribute
more to the total fitness of the optimal solution than oth-
ers. Also, a small number of individuals may contain multiple
HEFBB’s. Since all of the HFBB’s must be represented in the
population if there is to be any chance of combining them,
competition is restricted to those individuals which contain
building blocks corresponding to the same subfunction. The-
oretically, this may be achieved by allowing competition only
between those individuals which share at least

o= 4 2] 3)

common defining loci, where X is the number of defining loci
for the individuals, £ and z are as defined above, and
2 2
0_2 — A (Z —)‘) (4)
£2(0-1)
is the variance of the distribution of a random variable L cor-
responding to the number of defining loci shared by two ran-
domly selected individuals. Thus, the 8 is calculated using a
normal distribution approximating the actual distribution of
L in the initial population. The approximation ignores the
dependence of L’s distribution on the dynamics of the genetic
population in subsequent generations.

By carefully choosing a primordial schedule of tournament se-
lection and BBF, a population can be generated which consists
of strings of length k& and which is dominated by HFBB’s. In
current practice, it is common to use a full shuffle and an
empirically determined threshold schedule [10].

Exploitation of Data Parallelism

A common approach to implementation of GAs on coarse
grained parallel architectures is the island model [8]. In this
approach each processor executes a separate GA on a sub-
population. Numerous variations exist in which either the
selection operation executing on a particular processor is af-
fected by other processors’ subpopulations, or processors com-
municate some portion of their subpopulations to other pro-
cessors. These approaches extend with some modifications to
the messy GA [12]. This paper examines the solution qual-
ity and execution time obtained using two designs of the fast

messy GA based on the island model. The designs are chosen
for their simplicity, and do not consider alternatives such as
non-homogenous subpopulations [12] and migration [11].

The first design, called the fully parallel design, uses indepen-
dent subpopulations throughout the execution. Omne proces-
sor (the controller), in addition to executing the fast messy
GA, reads the input parameters and broadcasts them to the
remaining processors. From Equation 2, each subpopulation

contains
()
1 4
N=e|l-——2—
Pl oo—k
O —k

individuals, where P is the number of processors. Following
completion of the juxtapositional phase, a brief serial phase
occurs in which each processor communicates its best indi-
vidual to the controller, which then reports the overall best
individual and its fitness.

222 3% (m —1)2F (5)

The second design, called the partially parallel design, also uses
independent subpopulations in the primordial phase. Prior
to the juxtapositional phase, the controller processor receives
each of the other processors’ subpopulations and combines
them in a single population. The controller then carries out
the juxtapositional phase serially. After the juxtapositional
phase, the controller reports its best individual and its fitness.

Solution Quality

We are interested in the distribution of the random variable
By, the number of HFBB’s in an arbitrary individual in gen-
eration g. We begin by deriving the distribution of By, the
number of HFBB’s in an arbitrary initial string. The proba-
bility that an initial string contains + HFBB’s is given by

P[By=i]= Y PIF =j]P[Bo =i|F = j] (6)

where F'is the number of fully specified building blocks in the
string. The distribution of F' involves an occupancy problem
with k indistinguishable objects and m indistinguishable cells,
the solution of which involves considering all distinct partitions
of k into exactly m parts [13]. It also involves the number of
ways to choose the unspecified bits within a chosen building
block. For example, for £ = 50 and k = 5, the number of loci
combinations giving 7 fully specified blocks is

(D)))
(D)) (V) (3) =moom

Since there are 2,118,760 total loci combinations, P[F = 7] =
0.1274. Now the probability that ¢ of the j fully specified

building blocks in a string are HFBB’s is

m—1

PB=ilF=j]= Y ({)(f—l)ﬂ—"(z’“)’"—ﬂ—l. (7)

g=m—k

We note that this probability is indepedent of the number of
processors and is the same for both designs. The distribution
of By for £ = 50 and k& = 5 is shown at Table 1.

Table 1: Distributions of By

1 By Threshold
0 0.8329 | 39
1 0.1545 | 35
2 0.0120 | 28
3 | 0.0005 | 23
4 ;.0001 18
5 ;.0001 15
6 ;.0001 13
7 | ;.0001 10
8 ;.0001 9
9 ;.0001 7

Next we consider the effects of tournament selection on By.
There are three mutally exclusive events Fp, E>, and E3 in
which a string containing exactly : HFBB’s is included in gen-
eration ¢, so that

P[B, = i] = P[E1] + P[E2] + P[Ex]. (8)

F is the event that such a string is selected as the first mate
for a tournament, and no compatible second mate is found,
for which

P[Er] = P[Bg—1 = 1] P[]] (9)

where 1 is the event that a randomly chosen string is in incom-
patible with every other string in the population. Since the
number of common defining loci of randomly selected strings
has a hypergeometric distribution [1], we have

o[£ GG
=

F is the event that such a string is selected as the first mate,
and that the second mate has no more than ¢« HBFF’s (we
assume that the mate with more HBFF’s always wins, and
that the first mate wins in case of a tie). We write

(10)

PLE) = P[Byy =i)(1 = PII) Y | P[Bymr =3). (11)

Finally, E5 is the event that such a string is chosen as the sec-
ond mate, when the first mate contains fewer than ¢+ HFBB’s,
S0

The probability of the event that BBF results in a string with
1 HFBB’s is

P[By=i]=Y PlBy1 =i+]P[D},,(h,)] (13)

where D7(Xo, A1) is the event that BBF disrupts j HFBB’s in
reducing the string length from Ag to A1. Accounting for the
event that fewer than j HFBB’s are disrupted, we have the
recursion relation

(Xo — (1 — j)k)
Ao — M1 i1
P[DI(Ao, M) = (N) —ZP[Df(Ao,)\l)]
)\0 _)\1) k=0

We note that the distribution of B, at the end of the primor-
dial phase is identical for both designs. This does not imply
that overall solution quality must be identical. In order for the
cut-and-splice operator to result in the formation of an indi-
vidual containing two HFBB’s, both HFBB’s must be present
in the population. Since each subpopulation of the fully paral-
lel design initially contains fewer HFBB’s, it is expected that
the same is true of the juxtapositional subpopulations for this
design. Thus, the solution quality of the fully parallel design is
expected to decrease with an increasing number of processors.
In contrast, since the number of HFBB’s in the combined jux-
tapositional populations is expected to achieve a maximum for
some P, the solution quality of the partially parallel design is
expected to achieve a maximum also.

Execution Time

The execution time of both designs of the fast messy GA de-
pends on the execution time of each of the three phases, and
the time required for communication. The initialization time
is determined by the subpopulation size, and is O(P™!).

The primordial phase execution time is a function of the sub-
population size, the shuffle size, and the probability of com-
patibility for individuals randomly selected from the same sub-
population [11]. Since the shuffle size is chosen to be equal to
the subpopulation size, both are inversely proportional to P.
The probability of compatiblity of randomly selected solutions
does not depend on P in any obvious way. Thus, primordial
phase execution time is expected to be O(P™?).

Similarly, the juxtapositional phase execution time is a func-
tion of subpopulation size, shuffle size, and probability of com-
patibility. For the fully parallel design, execution time is again
expected to be O(P_l). For the partially parallel design, jux-
tapositional phase execution time is expected to be indepen-

dent of P.

Communication time for the fully parallel design is expected
to be O(P) but negligible for P < n, since only the GA
parameters and a single individual from each population is
communicated. For the partially parallel design, all individ-
uals except those in controller processor’s subpopulation are

communicated. Communication time is expected to increase
asymtotically with increasing P.

Thus, for reasonable problem sizes, total execution time for
the both designs is expected to decrease as O(P_l) forP<€n
and increase as O(P) otherwise. For P > 1, execution time of
the fully parallel design is expected to be less than that of the
partially parallel design.

Experimental Results

In order to experimentally determine the effects of each of
the designs on solution quality and execution time, experi-
ments are performed using a substantially updated version
of the parallel messy GA (PMGA)[3]. The PMGA is part of
AFIT’s GA Toolkit, which includes several sequential and par-
allel GAs [3, 11]. Both designs of the parallel fast messy GA
are implemented on an Intel Paragon parallel supercomputer
in C under the Paragon OSF/1 Operating System Release 1.1
operating system.

For each design, the problem solved is the 50 bit deceptive
problem addressed by Goldberg, et. al. [7]. The problem con-
sists of ten 5-bit subproblems, each of which is an order-5 fully
deceptive trap function. The total fitness of a solution to the
full problem is the sum of the fitnesses of the solutions to the
subproblems. The encoding scheme for the function is based
on a string of fifty genes and a binary genic alphabet. The bits
corresponding to any given subproblem occur in consecutive
genes.

The Paragon allocates processors in partitions of any size from
1 to a configuration dependent maximum. For these experi-
ments, partition sizes of 1, 2, 5, 10, 20, 40, 60, and 80 are used.
Each implementation is executed 8 times for each of the eight
partition sizes, using 8 randomly generated seeds. The same
seeds are used for both designs and all partition sizes. The
GA parameters are chosen to match those used by Goldberg,
et. al. [7, 10]. A total of fourteen applications of BBF are
performed, as shown in Table 2. The shuffle number is equal

Table 2: BBF and Threshold Schedule

Generation | String length | Threshold
0 45 39
7 39 35

11 34 28
15 29 23
19 25 18
23 22 15
29 19 13
35 16 10
41 14 9
47 12 7
53 10 6
59 S 5
65 7 4
71 6 3
77 5 4

to the subpopulation size, the cut probability is 0.02, and the

splice probability is 1.0. The primordial phase has 81 gener-
ations and the juxtapositional has 8. The overflow factor is
1.6, and the total population size is 1786 (Kargupta actually
reports a population size of 1785). No outer loop is performed,
and the competitive template is forced to consist of all 0’s.

The average solution quality obtained using each of the designs
for each partition size is shown in Figure 1. Likewise, the mean

10

T T
Partially Parallel Design <—
Fully Parallel Design -+-

95 -

85

Best Fitness

75+

40
Processors

Figure 1: Mean Fitness

execution time for each of the desings for each partition size
is shown in Figure 2.

1000

Partially Parallel Design <—
Fully Parallel Design -+-
Linear Speedup ----

=

o

S}
T

N
o
T
L

Mean Execution Time (controller CPU secs)

1 L

10
Processors

Figure 2: Overall Speedup

Conclusions

The fully parallel design of the fast messy genetic algorithm
exhibits apparently super-linear speedup up to at least 80 pro-
cessors for the test problem used in this paper. It does so at
the cost of an asymtotic decrease in solution quality. The
partially parallel design also exhibits apparently super-linear
speedup, but does so while achieving a maximum in solution

quality when the number of processors is near the number of
HEBB’s necessary to construct a complete solution.

Recommendations

The designs examined in this paper do not consider options
such as non-homogenous initial subpopulations. It has been
shown elsewhere [12] that the execution time of the parallel
messy GA is strongly affected by the distribution of individuals
in the initial subpopulations, and in particular by the proba-
bility of compatibility between solutions in those populations.
Thus, a logical next step is to incorporate non-homogenous
initialization strategies in the parallel fast messy GA.

Also, migration has been shown to have significant effects on
both solution quality and execution time in the parallel simple
GA. It is a natural enhancement of the parallel fast messy GA
designs discussed in this paper to incorporate such migration
methods in both the primordial and juxtapositional phases.

Finally, current understanding of the fast messy GA is in-
sufficient to provide a methodology for selecting a primordial
schedule of building block filtering and appropriate tourna-
ment selection thresholds and shuffle sizes. The fast messy GA
will be substantially more applicable to real problems when
a complete theory is available. Such a theory must provide a
means for dynamically determining thresholds and shuffle sizes
based upon the current distribution of the GA population.

Author Contact Information

Graduate School of Engineering, Department of Electrical and
Computer Engineering, Wright-Patterson AFB OH 45433-
7765 {Imerkle, lamont }@afit.af.mil

References

[1] Deb, Kalyonmoy. Binary and Floating Point Optimiza-
tion Using Messy Genetic Algorithms. PhD dissertation,
Department of Engineering Mechanics, The University of
Alabama, Tuscaloosa, AL 35487-2908, April 1991.

[2] DeJong, Kenneth A. An Analysis of the Behavior of a
Class of Genetic Adaptive Systems.. PhD dissertation,
The University of Michigan, Ann Arbor MI, 1975.

[3] Dymek, Capt Andrew. An Ezamination of Hypercube
Implementations of Genetic Algorithms. MS thesis,
AFIT/GCE/ENG/92-M, Air Force Institute of Technol-
ogy School of Engineering, Wright-Patterson AFB OH,
March 1992 (AD-A248092).

[4] Goldberg, David E. and others. “Messy Genetic Algo-
rithms: Motivation, Analysis, and First Results,” Com-
plex Systems, 3:493-530 (1989).

(5]

[6]

[10]

[11]

[12]

[13]

[14]

Goldberg, David E. and others. “Messy Genetic Algo-
rithms Revisited,” Complex Systems, 4:415-444 (1990).

Goldberg, David E. and others. “Don’t Worry, Be Messy.”
Proceedings of the Fourth International Conference on
Genetic Algorithms. 24-30. San Mateo CA: Morgan
Kaufmann Publishers, Inc., 1991.

Goldberg, David E. and others. “Rapid, Accurate Op-
timization of Difficult Problems Using Fast Messy Ge-
netic Algorithms.” Proceedings of the Fifth International
Conference on Genetic Algorithms, edited by Stephanie
Forrest. 56—64. San Mateo CA: Morgan Kaufmann Pub-
lishers, Inc., 1993.

Gordon, V. Scott and Darell Whitley. “Serial and Par-
allel Genetic Algorithms as Function Optimizers.” Pro-
ceedings of the Fifth International Conference on Genetic
Algorithms, edited by Stephanie Forrest. 177-183. San
Mateo CA: Morgan Kaufmann Publishers, Inc., 1993.

Holland, John H. Adaptation in Natural and Artificial
Systems (First mit press Edition). Cambridge, MA: MIT
Press, 1992.

> Tourna-

Kargupta, Hillol. “Personal communication.”
ment selection parameters in the fast messy GA, Decem-

ber 1993.

Merkle, Laurence D. Generalization and Parallelization
of Messy Genetic Algorithms and Communication in Par-
allel Genetic Algorithms. MS thesis, Air Force Institute
of Technology, WPAFB OH 45433, December 1992.

Merkle, Laurence D. and Gary B. Lamont. “Compar-
ison of Parallel Messy Genetic Algorithm Data Distrni-
bution Strategies.” Proceedings of the Fifth International
Conference on Genetic Algorithms, edited by Stephanie
Forrest. 191-198. San Mateo CA: Morgan Kaufmann
Publishers, Inc., 1993.

Roberts, Fred S. Applied Combinatorics. Englewood
Cliffs, NJ: Prentice Hall, 1984.

Whitley, Darrell. “Fundamental Principles of Deception
in Genetic Search.” Foundations of Genetic Algorithms,
edited by G. Rawlins. San Mateo, California: Morgan
Kaufmann, 1991.

