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Comparison of Parallel Messy Genetic Algorithm Data
Distribution Strategies

1 Introduction

The Schema Theorem provides a mechanism for theoretical analysis of the expected allo-
cation of trials in a simple genetic algorithm (GA)[?]. It, along with the static building
block hypothesis, gives rise to the identification of a class of problems called deceptive prob-
lems[?, 7, 7, ?]. Goldberg proposes the messy GA specifically to address the peculiarities
associated with deceptive problems[?, 7, ?]. Validity of the SBBH, and therefore the signif-
icance of deception itself is the subject of some debate[?, 7, 7], which this paper does not
attempt to address. However, the messy GA has performed well enough in comparison with
the simple GA on non-deceptive problems to merit additional investigation[?]. Research in
parallel genetic algorithms has focused primarily on identifying efficient methods for selec-
tion and communication strategies[?, 7, 7, ?]. Because the simple GA typically uses random

initialization, data distribution has not been an issue in parallel GA research. In contrast,
due to the use of the partially enumerative initialization scheme, parallelization of the messy
GA demands the consideration of data distribution.

Analysis, which is confirmed by experiment[?], shows that the fraction of execution time
required by the primordial phase increases significantly for larger problem sizes, and dom-
inates the overaﬁ execution time. In turn, the vast majority of the execution time in the
primordial phase is consumed by the tournament selection algorithm. The implication is
that in order to obtain reasonaﬁle speedup from parallelization, initial effort must focus
on efficient parallelization of tournament selection in the primordial phase. This paper de-
scribes four parallel implementations of the messy genetic algorithm, each of which uses a
different strategy to exploit the data parallelism present in the primordial phase in order to
obtain speedup in the tournament selection algorithm (Section 2). It also describes exper-
iments comparing the execution time and solution quality of the four implementations and
the results of those experiments (Section 3). Finally, it presents conclusions (Section 4) and

recommendations (Section 5).

2 Primordial Phase Data Distribution Strategies.

In order to implement a parallel tournament selection algorithm, it is convenient to first de-
scribe the algorithm in an architecturally independent manner. Chandy and Misra propose
UNITY (Unbounded Nondeterministic Iterative Transformations) as a method for obtaining
such a description[?]. A UNITY program describes the requirements for a process without
specifying the order of operations or the mapping of operations to processors. Thus, a UNITY
program may be mapped to any architecture, whether it be sequential, asynchronous shared-
memory, or distributed memory. The description of a mapping describes how the UNITY
program is executed on the target architecture. Mappings for particular classes of architec-
tures exhibit common characteristics. The target architecture in this study is a distributed
memory (DM) system, which is described formally as consisting of a fixed set of processors,
a fixed set of communication channels, and a memory for each processor|[?, 83]. Using the
formal requirement for mappings to DM architectures, and a UNITY representation of the



Nodes 0 1 2 3 4 5 6 7 8+
1 32480 - - - - - - -

2 19584 | 12896 - -

4 10752 | 8832 | 7168 | 5728 - - - -

8 5632 | 5120 | 4640 | 4192 | 3776 | 3392 | 3032 | 2696
16 3872 | 3552 | 3248 | 2960 | 2688 | 2432 | 2192 | 1968 9568
32 3248 | 3024 | 2808 | 2600 | 2400 | 2208 | 2024 | 1848 || 12320
64 3248 | 3024 | 2808 | 2600 | 2400 | 2208 | 2024 | 1848 || 12320

o O OO

Table 1: Indexed Distribution Strategy Allocation

tournament selection algorithm, it has been proven that standard tournament selection is
inherently sequential [?, pp. 78-79]. However, many approximations exist which are paral-
lelizable. A modified algorithm may be obtained by first arbitrarily allocating the variables
of the original algorithm to processors and then modifying the statements in many way such
that each statement references only variables which are allocated to a single processor. The
UNITY description for one such algorithm is shown at Figure 1. This algorithm may be
directly mapped to a distributed memory architecture by allocating to the same processor
those statements which share the same value of j. The number of solutions allocated to
each Il)rocessor by this algorithm is determined by the SUB_POP_SIZE data structure. The
actual solutions which are assigned to the same subpopulation are determined by the map-
ping from the distribution data structure to the pop data structure. The remainder of this
section presents four versions of the Initialize_Population process, each of which describes a
different partitioning and mapping of solutions to the processors.

The first strategy, called the “indexed” strategy assigns building blocks to processors
using an interleaving scheme, using the block’s first defined locus as the interleaving key.
Thus, a solution which is defined over loci ny,ns,...ng, so that the first defined locus 1s
Nmin = min(ny, ng, ...ng), will be allocated to processor j = N, mod m, where m is the
number of processors. Using this strategy each processor j, 0 < 7 < m, is allocated

N‘_Zf: l—j—im—1 0
7 P k—1
solutions, where [ is the string length, k is the block size, and

I=[(l—=j)/m] -1 (2)

Thus, use of this strategy for a 30-bit problem with a block size of 3, allocates solutions
to processors as shown in Table 1. This strategy allocates significantly more solutions to
some processors than to others. In cases where the number of processors is greater than
the string length, some processors are not allocated any solutions. In particular, for the
above example, the strategy allocates no solutions to processors greater than 29. The second
strategy, “modified indexed” distribution, is a modification of the first strategy. Solutions
for which the first defined locus is greater than the number of processors are assigned to
processors in reverse order. Thus, a solution which is defined on loci nq,no,...n; will be
allocated to processor j = N if Ny < mor j =m —1 — ny, mod mif ny,,, > m. Using
this strategy each processor j, 0 < 7 < m, is allocated

Nj:<l;i—11>+g<l—(i+k1)_ml+j—1> 3)



Function Conduct_Parallel-Tournament_Selection
declare
dist : array [1..SUB_POP_SIZE]j]] of integer
perm : array [1..SUB_POP_SIZE[j]] of integer
ngp : integer
0 : integer
popindex : integer
found : array [1..SUB_POP_SIZE]j]] of boolean
tourn_seq : integer
always
candl = dist{SUB_POP_SIZE[j] + popindex]
cand2 = dist{SUB_POP_SIZE[j] +
((popindex + i mod SUB_POP_SIZE[j]) + 1)]
0= [M

compatible = 0 < | candl1.loci N cand2.loci |
! .
SUB_POP_START(j) = Zi:o SUB_POP_SIZE]j)
initially
tourn_seq = 0
assign

(IVj:1<j<Pu
{Initialization}
(IVi:1< i< SUB.POP_SIZE[j] ::
found[SUB_POP_STARTTJj] + i := FALSE
|| perm[SUB_POP_-START[j] + 1
:= Random(POP_SIZE)
[| nsp :=1
|| tourn_seq := 1
) if tourn_seq = 0 A conduct_tournament
l
{Shuffle the population}
([[Vi:1< i< SUB.POP_SIZE]] ::
dist{SUB_POP_START[j] + 1] :=
dist[perm[SUB_POP_START(j] + 1]
|| dist [perm [SUB_.POP_STARTIj] + i]] :=
dist{SUB_-POP_STARTTj] + 1|
|| tourn_seq := 2
y if tourn_seq = 1
I
{Conduct tournaments (nested loop)}
(||V popindez : 1 < popindex < SUB_POP_SIZE][j] ::
(IVi: 1< i< ngy, Afound[popindez] ::
found|[popindex],
newdist[popindexz),
tourn_seq :=
TRUE, candl, 3
if {First mate is more fit}
(fitness(candl) > fitness(cand2) V
(fitness(candl) = fitness(cand2))A A1 < A2)
A compatible)
TRUE, cand2, 3
if {Second mate is more fit}
(fitness(cand2) > fitness(candl) V
(fitness(candl) = fitness(cand2))A A1 > A2)
A compatible)
FALSE, candl, 3
if— compatible
)
) if tourn_seq = 2
l
{Copy new population}
(|Vi:1<i< SUB.POP-SIZE[j] ::
dist{SUB_POP_START[j] + 1] :=
newdist{SUB_.POP_STARTIj] + 1]
|| conduct_tournament := FALSE
|| tourn_seq := 0
if found[SUB_.POP_START[j] + i



Nodes 0 1 2 3 4 5 6 7 Variation
1 32480 - - - - - - - 0

2 15624 | 16856 - - - - - - 0

4 7536 | 7888 | 8296 | 8760 - - - - 0

8 4096 | 4032 | 3992 | 3976 | 3992 | 4040 | 4120 | 4232 0
32 3248 | 3024 | 2808 | 2600 | 2408 | 2232 | 2072 | 1928 12160
32 3248 | 3024 | 2808 | 2600 | 2400 | 2208 | 2024 | 1848 12320
64 3248 | 3024 | 2808 | 2600 | 2400 | 2208 | 2024 | 1848 12320

Table 2: Modified Indexed Distribution Strategy Allocation

solutions. Thus, use of this strategy for the same problem allocates solutions to processors
as shown in Table 2. This strategy allocates solutions more evenly than the indexed strategy,
although there is still some imbalance. In cases where the number of processors is greater
than half of the string length, this strategy approaches the indexed strategy.

The third strategy implicitly orders the building blocks, then interleaves the building
blocks across the processors based upon their position in the ordering. This is the strategy
used in Dymek’s parallel implementation of the messy GA[?]. It is called the “interleaved”
distribution strategy. The implicit ordering is such that if two solutions z and Y are defined
on loci x1, xg, ...xx and yy, Yo, ...y, Where 11 < z9 < ... < ) and y; < Yo < ... < Yi, solution
x occurs first in the ordering if and only if there exist an z; and y; such that z; < y; and
for all 0 < j <4, x; = y;. Each solution then has a unique index z such that it occurs after
exactly x solutions in the ordering. Each solution is allocated to processor ;7 = x mod m.
Using this strategy each processor j, 0 < j < m, is allocated

N = 7@)_‘7 ()

m

solutions. Thus, this strategy allocates solutions to processors for the example problem as
shown in Table 3. This strategy allocates solutions as evenly as possible.

The last strategy uses the same implicit ordering, and assigns the building blocks to
the processors using a block distribution strategy. Each solution is allocated to processor

N; = [%J where N = 37, N;, is the total population size. This strategy also allocates the
solutions as evenly as possible.

In order to anticipate the effect of distribution strategy on primordial phase execution
time, some informal analysis of the behavior of the tournament selection algorithm is in
order. The algorithm, as presented previously in Figure 1, contains a nested loop. For
each member of the current subpopulation, tﬁe inner loop randomly selects solutions as
potential mates. It continues selecting until either a solution is found which is “compatible”
with the first mate or the shuffle size nyh has been exceeded[?]. Two solutions x and y are
compatible if they are defined over loci {z1,xs, ...z} and {y1, yo,...yx}, the intersection of
which contains at least some threshold # number of elements. The shuffle size is an input
parameter specified at run time. Thus, the execution time of the primordial phase on a given
processor is a function of



Nodes 0 1 2 3 4 5 6 7 Variation
1 32480 - - - - - - - 0

2 16240 | 16240 - - - - - - 0

4 8120 | 8120 | 8120 | 8120 - - - - 0

8 4060 | 4060 | 4060 | 4060 | 4060 | 4060 | 4060 | 4060 0
16 2030 | 2030 | 2030 | 2030 | 2030 | 2030 | 2030 | 2030 16240
32 1015 | 1015 | 1015 | 1015 | 1015 | 1015 | 1015 | 1015 24360
64 508 508 | 508 | 508 | 508 | 508 | 508 | 508 28416

Table 3: Interleaved/Block Distribution Strategy Allocations

e the number of solutions allocated to the processor’s subpopulation,

e the probability with which two solutions randomly selected from a particular subpop-
ulation are compatible, and

e the shuffle size.

The data distribution strategy affects both the number of solutions allocated to each sub-
population and the probability of compatibility. As discussed previously, the block and
interleaved strategies allocate solutions to processors uniformly, while the indexed and mod-
ified indexed strategies do not. On this basis, the two former strategies should require less
execution time that the latter two, especially in cases for which the number of processors
is the same magnitude or larger than the string length. However, under either of the two
indexed strategies, solutions are assigned to the same processor if their initial defining loci

are the same. Assuming that the block size, k, and the string length I, are such that k% <,
any two such solutions are compatible. Thus, the probability of the compatibility on an
indexed strategy is relatively high. Likewise, because of the implicit ordering used in the
interleaved and blocked strategies, solutions which occur close to each other in the orderinlg(;
are likely to be compatible. This implies that the probability of compatibility in the bloc

strategy is relatively high, while that for the interleaved strategy is close to that of the se-
quential algorithm. On the basis of compatibility, the interleaved strategy should require
greater execution time than the other three. With any of the four distribution strategies
the population following the primordial phase is likely to be very similar to that obtaine

in a sequential implementation, as long as the average non-zero subpopulation size is large
compared with the shuffle size.

3 Results.

In order to determine the effects of each of the data distribution strategies on solution quality
and execution time, a series of experiments are performed. Versions of the parallel messy

genetic algorithm|[?] which use modified data distribution strategies are implemented on a
64-node iPSC/i860 in C under the UNIX System V/386 Release 3.2 operating system'. In
each case, the reduced subpopulations are recombined prior to the juxtapositional phase.

tCourtesy of the Intel Supercomputer Training Center, Beaverton, Oregon.



Subproblem Loci
1 1 6 11
2 2 7 12
3 3 8 13
4 4 9 14
5 5 10 15
6 16 21 26
7 17 22 27
8 18 23 28
9 19 24 29
10 20 25 30

Table 4: Order 3 Deceptive Function Subproblems

For each strategy, the problem solved is the order-3 fully deceptive binary functional
optimization problem addressed by Dymek|?], which is a slight modification of the problem
described by Goldberg[?]. The problem consists of ten 3-bit subproblems, each of which is
order-3 fully deceptive. The total fitness of a solution to the full problem is the sum of the
fitnesses of the solutions to the subproblems. The encoding scheme for the function is based
on a string of thirty genes and a binary genic alphabet, as defined by Goldberg[?]. The
bits corresponding to a particular subproblem are separated within the string, as shown in
Table 4. Separation of the genes increases the defining length of important building blocks,
thus making the deceptive problem GA-hard.

The 64-node iPSC/i860 allocates processors in sets of 1, 2, 4, 8, 16, 32, or 64. Each MGA
implementation is executed 10 times for each of the seven possible hypercube dimensions,
using 10 randomly generated seeds. The same ten seeds are used for all strategies and all
hypercube dimensions. The number of experiments is selected to be large enough to give a
reasonable chance of obtaining results which are statistically significant at the 1% level. A
total of four reductions are performed, with a reduction interval of 2. The shuffle number is
30, the cut probability is 0.0166667, and the splice probability is 1.0. A total of 19 primordial
and juxtapositional generations are performed, and the overflow factor is 1.6.

The average solution quality obtained using each of the four distribution strategies for
each hypercube dimension is shown at Table 5. The data are compared statistically using the
Kruskal-Wallis H Test, which does not require that the data obey a normal distribution [?,
p. b44]. Tests at the 5% level of significance for each hypercube dimension indicate that
choice of distribution strategy does not have a statistically significant effect on solution
quality for the fully deceptive binary function except that for 32 or more processors the
interleaved strategy does not perform as well as the other three strategies.

Likewise, the average execution time for each of the four distribution strategies for each
hypercube dimension is shown at Table 6. The data are again compared statistically using the
Kruskal-Wallis H Test. Tests at the 0.5% level of significance for each hypercube dimension
indicate that choice of distribution strategy has a statistically significant effect on execution
time. The exception is that the execution times for the indexed strategy on 32 or more
processors and the modified indexed strategy on 16 or more processors are not significantly
different. Average speedups are shown for each implementation for the primordial phase



Distribution Strategy
Processors || Index | ModIndex | Block | Interleave
1| 297.8 | 297.8 297.2 | 297.2
2| 298.2 | 297.0 298.0 | 298.0
41 297.6 | 298.0 298.2 | 298.2
8 || 296.6 | 296.8 297.8 | 297.8
16 || 296.4 | 298.4 299.0 | 298.0
32 1 299.2 | 299.2 298.8 | 296.8 (*)
64 || 299.2 | 299.2 298.4 | 296.0 (*)

Table 5: Solution Quality
(*) Indicates presence of statistically significant difference

Distribution Strategy

Processors || Index ModIndex Block Interleave
1 2.016el 2.003el 1.951el | 1.952¢l
2 || 8.891e0 8.733e0 8.228e0 | 9.791e0
4 || 4.080e0 3.649¢0 3.706e0 | 5.130e0
8 || 1.854¢e0 1.395¢e0 1.540e0 | 2.570e0
16 || 9.637e-1 5.907e-1 (*) | 7.287e-1 | 1.229¢0
32 || 5.911e-1 (*) | 5.906e-1 (*) | 3.496e-1 | 6.186e-1
64 || 5.910e-1 (*) | 5.912e-1 (*) | 2.086e-1 | 3.379e-1

Table 6: Execution Time
(*) Indicates absence of statistically significant difference
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Figure 2: Primordial Phase Speedup

alone (Figure 2) and the overall execution (Figure 3). The absence of speedup in overall
execution time for greater than 16 processors indicates that additional speedup must be
obtained from paraﬁelization of the juxtapositional phase. For 8 or fewer processors, the
modified indexed strategy yields the best speedup of the primordial phase, while the block
strategy results in the next best speedup. As expected, the modified indexed strategy exhibits
significantly worse speedup for implementations for which the number of processors exceeds
one half of the string length. The block strategy obtains the best primordial phase speedup
in such implementations.

The indexed, modified indexed, and block distribution strategies all result in “super-linear
speedup” of the primordial phase. The modified indexed and %alock distribution strategies
also result in “super-linear speedup” of the initialization, primordial phase, and conversion
operations together. The presence of “super-linear speedup” is misleading in that the par-
allel algorithm is not completely functionally equivalent to the sequential algorithm. The
modifications introduced in the parallelization account for part of the speedup. Application
of the same modifications to the sequential algorithm should result in reduced execution
time.

4 Conclusions.

The execution time of the MGA is dominated by the primordial phase, indicating that
significant speedup requires parallelization of the tournament selection algorithm. The al-
gorithm is inherently sequential due to the property that any tournament may involve any
member of the population. Parallel algorithms exist which approximate the behavior of the
sequential tournament selection algorithm. The initial population may be distributed in a
number of ways, including the “indexed,” “modified indexed,” “interleaved,” and “block”
distribution strategies. The indexed and modified indexed strategies allocate solutions to
processors based upon the solution’s first defined locus, resulting in uneven distribution. The
interleaved and block distribution strategies result in even distributions.

Primordial phase execution time is a function of the number of solutions in the subpop-
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ulation, the probability that two randomly selected solutions are compatible, and the shuffle
size. The distribution strategy affects the number of solutions in the subpopulation and the
probability that two solutions are compatible. Experiments comparing the solution quality
and execution time of the four distribution strategies when applied to the fully deceptive
binary function show that in most cases the distribution strategy does not have a significant
effect on solution quality.

In contrast, results indicate that the distribution strategy does have a significant effect
on primordial phase execution time. The number of solutions allocated to each processor
is one factor influencing execution time, but not the only one. The degree of compatibility
among solutions assigned to the processor also contributes significantly to execution time
in the primordial phase. Where the degree of compatibility is high, as with the indexed,
modified indexed, and block strategies, the second mate for each tournament is found rela-
tively quickly. Conversely, where the degree of compatibility is low, as with the interleaved
strategy, additional time is required to find a compatible mate. The overall effect is that
the interleaved strategy results in significantly higher execution time in the primordial phase
than the other strategies.

5 Recommendations.

These results are explained by an informal theoretical analysis of the behavior of the par-
allel tournament selection algorithm. A more complete and rigorous theoretical treatment
is needed to generalize the results to other problems and architectures. Also, additional
experimentation is needed. Experiments involljving larger instances of similar problems and
larger architectures are needed to test the scalability of the results. Experiments involv-
ing other types of problems, such as permutation problems and difficult but non-deceptive
function optimization problems, are needed to ensure that the results are not peculiar to
the pedagogical function used in this study. Of critical importance is the identification of
new distribution strategies which scale to arbitrarily large architectures while still respecting
compatibility requirements.
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